module Cat.Instances.Graphs whereprivate variable
  o o' o'' ℓ ℓ' ℓ'' : LevelThe category of graphs🔗
A graph (really, an 1) is given by a set of nodes and, for each pair of elements a set of edges from to That’s it: a set and a family of sets over
record Graph (o ℓ : Level) : Type (lsuc o ⊔ lsuc ℓ) where
  no-eta-equality
  field
    Node : Type o
    Edge : Node → Node → Type ℓ
    Node-set : is-set Node
    Edge-set : ∀ {x y} → is-set (Edge x y)open Graph
open hlevel-projection
instance
  Underlying-Graph : Underlying (Graph o ℓ)
  Underlying-Graph = record { ⌞_⌟ = Graph.Node }
  hlevel-proj-node : hlevel-projection (quote Graph.Node)
  hlevel-proj-node .has-level = quote Graph.Node-set
  hlevel-proj-node .get-level _ = pure (quoteTerm (suc (suc zero)))
  hlevel-proj-node .get-argument (_ ∷ _ ∷ c v∷ _) = pure c
  {-# CATCHALL #-}
  hlevel-proj-node .get-argument _ = typeError []
  hlevel-proj-edge : hlevel-projection (quote Graph.Edge)
  hlevel-proj-edge .has-level = quote Graph.Edge-set
  hlevel-proj-edge .get-level _ = pure (quoteTerm (suc (suc zero)))
  hlevel-proj-edge .get-argument (_ ∷ _ ∷ c v∷ _) = pure c
  {-# CATCHALL #-}
  hlevel-proj-edge .get-argument _ = typeError []A graph homomorphism consists of a mapping of nodes along with a mapping of edges
record Graph-hom (G : Graph o ℓ) (H : Graph o' ℓ') : Type (o ⊔ o' ⊔ ℓ ⊔ ℓ') where
  no-eta-equality
  field
    node : ⌞ G ⌟ → ⌞ H ⌟
    edge : ∀ {x y} → G .Edge x y → H .Edge (node x) (node y){-# INLINE Graph-hom.constructor #-}
private variable
  G H K : Graph o ℓ
open Graph-hom
unquoteDecl H-Level-Graph-hom = declare-record-hlevel 2 H-Level-Graph-hom (quote Graph-hom)
instance
  Funlike-Graph-hom : Funlike (Graph-hom G H) ⌞ G ⌟ λ _ → ⌞ H ⌟
  Funlike-Graph-hom .Funlike._·_ = node
Graph-hom-pathp
  : {G : I → Graph o ℓ} {H : I → Graph o' ℓ'}
  → {f : Graph-hom (G i0) (H i0)} {g : Graph-hom (G i1) (H i1)}
  → (p0 : ∀ (x : ∀ i → G i .Node)
          → PathP (λ i → H i .Node)
              (f · x i0) (g · x i1))
  → (p1 : ∀ {x y : ∀ i → G i .Node}
          → (e : ∀ i → G i .Edge (x i) (y i))
          → PathP (λ i → H i .Edge (p0 x i) (p0 y i))
              (f .edge (e i0)) (g .edge (e i1)))
  → PathP (λ i → Graph-hom (G i) (H i)) f g
Graph-hom-pathp {G = G} {H = H} {f = f} {g = g} p0 p1 = pathp where
  node* : I → Type _
  node* i = (G i) .Node
  edge* : (i : I) → node* i → node* i → Type _
  edge* i x y = (G i) .Edge x y
  pathp : PathP (λ i → Graph-hom (G i) (H i)) f g
  pathp i .node x = p0 (λ j → coe node* i j x) i
  pathp i .edge {x} {y} e =
    p1 {x = λ j → coe node* i j x} {y = λ j → coe node* i j y}
      (λ j → coe (λ j → edge* j (coe node* i j x) (coe node* i j y)) i j (e* j)) i
    where
      x* y* : (j : I) → node* i
      x* j = coei→i node* i x (~ j ∨ i)
      y* j = coei→i node* i y (~ j ∨ i)
      e* : (j : I) → edge* i (coe node* i i x) (coe node* i i y)
      e* j =
        comp (λ j → edge* i (x* j) (y* j)) (I-eq i j) λ where
          k (k = i0) → e
          k (i = i0) (j = i0) → e
          k (i = i1) (j = i1) → e
Graph-hom-path
  : {f g : Graph-hom G H}
  → (p0 : ∀ x → f .node x ≡ g .node x)
  → (p1 : ∀ {x y} → (e : Graph.Edge G x y) → PathP (λ i → Graph.Edge H (p0 x i) (p0 y i)) (f .edge e) (g .edge e))
  → f ≡ g
Graph-hom-path {G = G} {H = H} p0 p1 =
  Graph-hom-pathp {G = λ _ → G} {H = λ _ → H}
    (λ x i → p0 (x i) i)
    (λ e i → p1 (e i) i)
module _ {o o' ℓ ℓ' ℓr} {G : Graph o ℓ} {H : Graph o' ℓ'} ⦃ rel : Extensional (⌞ G ⌟ → ⌞ H ⌟) ℓr ⦄ where
  record Graph-hom∼ (f g : Graph-hom G H) : Type (o ⊔ o' ⊔ ℓ ⊔ ℓ' ⊔ ℓr) where
    field
      node : rel .Pathᵉ (f .node) (g .node)
      edge
        : ∀ {x y} (e : G .Edge x y)
        → PathP (λ i → H .Edge (rel .idsᵉ .to-path node i x) (rel .idsᵉ .to-path node i y))
            (f .edge {x} {y} e) (g .edge {x} {y} e)
  open Graph-hom∼ public
  private unquoteDecl eqv = declare-record-iso eqv (quote Graph-hom∼)
  instance
    Extensional-graph-hom : Extensional (Graph-hom G H) (o ⊔ o' ⊔ ℓ ⊔ ℓ' ⊔ ℓr)
    Extensional-graph-hom .Pathᵉ = Graph-hom∼
    Extensional-graph-hom .reflᵉ x .node   = rel .reflᵉ (x .node)
    Extensional-graph-hom .reflᵉ x .edge {a} {b} e = to-pathp
      (ap₂ (λ α β → subst₂ (H .Edge) {b' = x .node b} α β (x .edge e))
        (λ i j → to-path-refl {a = x .node} (rel .idsᵉ) i j · a)
        (λ i j → to-path-refl {a = x .node} (rel .idsᵉ) i j · b)
      ∙ transport-refl _)
    Extensional-graph-hom .idsᵉ .to-path p i .node = rel .idsᵉ .to-path (p .node) i
    Extensional-graph-hom .idsᵉ .to-path p i .edge e = p .edge e i
    Extensional-graph-hom .idsᵉ .to-path-over p = is-prop→pathp
      (λ i → Iso→is-hlevel 1 eqv (Σ-is-hlevel 1
        (Equiv→is-hlevel 1 (identity-system-gives-path (rel .idsᵉ)) (hlevel 1))
        (λ x → hlevel 1)))
      _ _
macro
  trivialᴳ! : Term → TC ⊤
  trivialᴳ! goal = unify goal (def (quote Graph-hom-path) (lam visible (abs "_" (def (quote refl) [])) v∷ lam visible (abs "_" (def (quote refl) [])) v∷ []))
idᴳ : {G : Graph o ℓ} → Graph-hom G G
idᴳ .node v = v
idᴳ .edge e = e
_∘ᴳ_ : ∀ {G : Graph o ℓ} {H : Graph o' ℓ'} {I : Graph o'' ℓ''}
  → Graph-hom H I → Graph-hom G H → Graph-hom G I
(f ∘ᴳ h) .node x = f .node (h .node x)
(f ∘ᴳ h) .edge x = f .edge (h .edge x)Graphs and graph homomorphisms can be organized into a category
Graphs : ∀ o ℓ → Precategory (lsuc (o ⊔ ℓ)) (o ⊔ ℓ)
Graphs o ℓ .Precategory.Ob = Graph o ℓ
Graphs o ℓ .Precategory.Hom = Graph-hom
Graphs o ℓ .Precategory.Hom-set _ _ = hlevel 2
Graphs o ℓ .Precategory.id  = idᴳ
Graphs o ℓ .Precategory._∘_ = _∘ᴳ_
Graphs o ℓ .Precategory.idr _ = trivialᴳ!
Graphs o ℓ .Precategory.idl _ = trivialᴳ!
Graphs o ℓ .Precategory.assoc _ _ _ = trivialᴳ!open Functor
open _=>_
module _ {o ℓ : Level} where
  module Graphs = Cat.Reasoning (Graphs o ℓ)
  graph-iso-is-ff : {x y : Graph o ℓ} (h : Graphs.Hom x y) → Graphs.is-invertible h → ∀ {x y} → is-equiv (h .edge {x} {y})
  graph-iso-is-ff {x} {y} h inv {s} {t} = is-iso→is-equiv (iso from ir il) where
    module h = Graphs.is-invertible inv
    from : ∀ {s t} → y .Edge (h · s) (h · t) → x .Edge s t
    from e = subst₂ (x .Edge) (ap node h.invr · _) (ap node h.invr · _) (h.inv .edge e)
    ir : is-right-inverse from (h .edge)
    ir e =
      h .edge (subst₂ (x .Edge) _ _ (h.inv .edge e))
        ≡˘⟨ subst₂-fibrewise {C' = λ a b → y .Edge (h .node a) (h .node b)} (λ _ _ → h .edge) _ _ _ ⟩
      subst₂ (y .Edge) _ _ (h .edge (h.inv .edge e))
        ≡⟨ ap₂ (λ a b → subst₂ (y .Edge) {b' = h .node t} a b (h .edge (h.inv .edge e))) prop! prop! ⟩
      subst₂ (y .Edge) _ _ (h .edge (h.inv .edge e))
        ≡⟨ from-pathp (λ i → h.invl i .edge e) ⟩
      e ∎
    il : is-left-inverse from (h .edge)
    il e = from-pathp λ i → h.invr i .edge e
  Graph-path
    : ∀ {x y : Graph o ℓ}
    → (p : x .Node ≡ y .Node)
    → (PathP (λ i → p i → p i → Type ℓ) (x .Edge) (y .Edge))
    → x ≡ y
  Graph-path {x = x} {y} p q i .Node = p i
  Graph-path {x = x} {y} p q i .Edge = q i
  Graph-path {x = x} {y} p q i .Node-set = is-prop→pathp
    (λ i → is-hlevel-is-prop {A = p i} 2) (x .Node-set) (y .Node-set) i
  Graph-path {x = x} {y} p q i .Edge-set {s} {t} =
    is-prop→pathp
      (λ i → Π-is-hlevel 1 λ x → Π-is-hlevel 1 λ y → is-hlevel-is-prop {A = q i x y} 2)
      (λ a b → x .Edge-set {a} {b}) (λ a b → y .Edge-set {a} {b}) i s t
  graph-path : ∀ {x y : Graph o ℓ} (h : x Graphs.≅ y) → x ≡ y
  graph-path {x = x} {y = y} h = Graph-path (ua v) (λ i → E i ) module graph-path where
    module h = Graphs._≅_ h
    v : ⌞ x ⌟ ≃ ⌞ y ⌟
    v = record
      { fst = h.to .node
      ; snd = is-iso→is-equiv (iso (h.from .node) (happly (ap node h.invl)) (happly (ap node h.invr)))
      }
    E : (i : I) → ua v i → ua v i → Type ℓ
    E i s t = Glue (y .Edge (unglue s) (unglue t)) (λ where
      (i = i0) → x .Edge s t , _ , graph-iso-is-ff h.to (Graphs.iso→invertible h)
      (i = i1) → y .Edge s t , _ , id-equiv)In particular, is a univalent category.
  Graphs-is-category : is-category (Graphs o ℓ)
  Graphs-is-category .to-path = graph-path
  Graphs-is-category .to-path-over {a} {b} p = Graphs.≅-pathp _ _ $ Graph-hom-pathp pv pe where
    open graph-path p
    pv : (h : I → a .Node) → PathP (λ i → ua v i) (h i0) (h.to .node (h i1))
    pv h i = ua-glue v i (λ { (i = i0) → h i }) (inS (h.to .node (h i)))
    pe : {x y : I → a .Node} (e : ∀ i → a .Edge (x i) (y i))
       → PathP (λ i → graph-path p i .Edge (pv x i) (pv y i)) (e i0) (h.to .edge (e i1))
    pe {x} {y} e i = attach (∂ i) (λ { (i = i0) → _ ; (i = i1) → _ }) (inS (h.to .edge (e i)))Graphs as presheaves🔗
A graph may equivalently be seen as a diagram
of sets.
That is, a graph 2 is the same as functor from the walking parallel arrows category to Furthermore, presheaves and functors to are equivalent as this category is self-dual.
  graph→presheaf : Functor (Graphs o ℓ) (PSh (o ⊔ ℓ) ·⇇·)
  graph→presheaf .F₀ G =
    let
      it = Fork {a = el! $ Σ[ s ∈ G ] Σ[ t ∈ G ] G .Edge s t }
        {el! $ Lift ℓ ⌞ G ⌟}
        (lift ⊙ fst) (lift ⊙ fst ⊙ snd)
    in opFˡ (opFˡ it)
  graph→presheaf .F₁ f .η true  a = lift (f .node (a .lower))
  graph→presheaf .F₁ f .η false a = _ , _ , f .edge (a .snd .snd)
  graph→presheaf .F₁ f .is-natural x y idh = refl
  graph→presheaf .F₁ f .is-natural x y inl = refl
  graph→presheaf .F₁ f .is-natural x y inr = refl
  graph→presheaf .F-id = ext λ where
    true  x → refl
    false x → refl
  graph→presheaf .F-∘ G H = ext λ where
    true  x → refl
    false x → refl
  g→p-is-ff : is-fully-faithful graph→presheaf
  g→p-is-ff {x = x} {y = y} = is-iso→is-equiv (iso from ir il) where
    from : graph→presheaf · x => graph→presheaf · y → Graph-hom x y
    from h .node v = h .η true (lift v) .lower
    from h .edge e =
      let
        (s' , t' , e') = h .η false (_ , _ , e)
        ps = ap lower (sym (h .is-natural _ _ inl $ₚ (_ , _ , e)))
        pt = ap lower (sym (h .is-natural _ _ inr $ₚ (_ , _ , e)))
      in subst₂ (y .Edge) ps pt e'
    ir : is-right-inverse from (graph→presheaf .F₁)
    ir h = ext λ where
      true x          → refl
      false (s , t , e) →
        let
          ps = ap lower (h .is-natural _ _ inl $ₚ (s , t , e))
          pt = ap lower (h .is-natural _ _ inr $ₚ (s , t , e))
          s' , t' , e' = h .η false (_ , _ , e)
        in Σ-pathp ps (Σ-pathp pt λ i → coe1→i (λ j → y .Edge (ps j) (pt j)) i e')
    il : is-left-inverse from (graph→presheaf .F₁)
    il h = Graph-hom-path (λ _ → refl) (λ e → transport-refl _)
private module _ {ℓ : Level} where
  presheaf→graph : ⌞ PSh ℓ ·⇇· ⌟ → Graph ℓ ℓ
  presheaf→graph F = g where
    module F = Functor F
    g : Graph ℓ ℓ
    g .Node = ⌞ F · true ⌟
    g .Edge s d = Σ[ e ∈ ∣ F.₀ false ∣ ]  F.₁ inl e ≡ s × F.₁ inr e ≡ d
    g .Node-set = hlevel 2
    g .Edge-set = hlevel 2
  open is-precat-iso
  open is-iso
  g→p-is-iso : is-precat-iso (graph→presheaf {ℓ} {ℓ})
  g→p-is-iso .has-is-ff = g→p-is-ff
  g→p-is-iso .has-is-iso = is-iso→is-equiv F₀-iso where
    F₀-iso : is-iso (graph→presheaf .F₀)
    F₀-iso .from = presheaf→graph
    F₀-iso .rinv F = Functor-path
      (λ { false  → n-ua (Iso→Equiv (
            (λ (_ , _ , x , _ , _) → x) , iso
            (λ s → _ , _ , s , refl , refl)
            (λ _ → refl)
            (λ (_ , _ , s , p , q) i → p i , q i , s
                                     , (λ j → p (i ∧ j)) , (λ j → q (i ∧ j)))))
          ; true → n-ua (lower , is-iso→is-equiv (iso lift (λ _ → refl) (λ _ → refl)))
          })
      λ { {false} {false} idh → ua→ λ _ → path→ua-pathp _ (sym (F .F-id {false} · _))
        ; {false} {true}  inl → ua→ λ (_ , _ , s , p , q) → path→ua-pathp _ (sym p)
        ; {false} {true}  inr → ua→ λ (_ , _ , s , p , q) → path→ua-pathp _ (sym q)
        ; {true}  {true}  idh → ua→ λ _ → path→ua-pathp _ (sym (F .F-id {true} · _)) }
    F₀-iso .linv G = let
      eqv : Lift ℓ ⌞ G ⌟ ≃ ⌞ G ⌟
      eqv = Lift-≃
      ΣE = Σ[ s ∈ G ] Σ[ t ∈ G ] G .Edge s t
      E' : Lift ℓ ⌞ G ⌟ → Lift ℓ ⌞ G ⌟ → Type _
      E' x y = Σ[ (s , t , e) ∈ ΣE ] (lift s ≡ x × lift t ≡ y)
      from : (u v : ⌞ G ⌟) → E' (lift u) (lift v) → G .Edge u v
      from u v ((u' , v' , e) , p , q) = subst₂ (G .Edge) (ap lower p) (ap lower q) e
      from-is : (u v : ⌞ G ⌟) → is-iso (from u v)
      from-is u v = iso (λ e → ((_ , _ , e) , refl , refl)) (λ x → transport-refl _)
        (λ ((u' , v' , e) , p , q) i →
          ( p (~ i) .lower , q (~ i) .lower
          , coe0→i (λ i → G .Edge (p i .lower) (q i .lower)) (~ i) e )
          , (λ j → p (~ i ∨ j))
          , (λ j → q (~ i ∨ j)))
      in Graph-path (ua eqv) λ i x y → Glue (G .Edge (ua-unglue eqv i x)
                                                     (ua-unglue eqv i y)) λ where
        (i = i0) → E' x y , from (x .lower) (y .lower) , is-iso→is-equiv (from-is _ _)
        (i = i1) → G .Edge x y , _ , id-equivThus, are presheaves and are thereby a topos.
  graphs-are-presheaves : Equivalence (Graphs ℓ ℓ) (PSh ℓ ·⇇·)
  graphs-are-presheaves = eqv where
    open Equivalence
    eqv : Equivalence (Graphs ℓ ℓ) (PSh ℓ ·⇇·)
    eqv .To = graph→presheaf
    eqv .To-equiv = is-precat-iso→is-equivalence g→p-is-isoThe underlying graph of a strict category🔗
Note that every strict category has an underlying graph where the nodes are given by objects and edges by morphisms. Moreover, functors between strict categories give rise to graph homomorphisms between underlying graphs. This gives rise to a functor from the category of strict categories to the category of graphs.
Strict-cats↪Graphs : Functor (Strict-cats o ℓ) (Graphs o ℓ)
Strict-cats↪Graphs .F₀ (C , C-strict) .Node = Precategory.Ob C
Strict-cats↪Graphs .F₀ (C , C-strict) .Edge = Precategory.Hom C
Strict-cats↪Graphs .F₀ (C , C-strict) .Node-set = C-strict
Strict-cats↪Graphs .F₀ (C , C-strict) .Edge-set = hlevel 2
Strict-cats↪Graphs .F₁ F .node = F .F₀
Strict-cats↪Graphs .F₁ F .edge = F .F₁
Strict-cats↪Graphs .F-id = Graph-hom-path (λ _ → refl) (λ _ → refl)
Strict-cats↪Graphs .F-∘ F G = Graph-hom-path (λ _ → refl) (λ _ → refl)The underlying graph functor is faithful, as functors are graph homomorphisms with extra properties.
Strict-cats↪Graphs-faithful : is-faithful (Strict-cats↪Graphs {o} {ℓ})
Strict-cats↪Graphs-faithful p =
  Functor-path
    (λ x i → p i .node x)
    (λ e i → p i .edge e)