module Cat.Univalent where
(Univalent) categories🔗
In much the same way that a partial order is a preorder where a category is a precategory where isomorphic objects are identified. This is a generalisation of the univalence axiom to arbitrary categories, and, indeed, it’s phrased in the same way: asking for a canonically defined map to be an equivalence.
We define a category to be univalent when its family of isomorphisms is an identity system. As usual, this natively cubical phrasing gives us slightly better definitional control over both the paths and the coherences that go into making a category univalent, but by a standard argument about identity systems, this is equivalent to the “book” notion.
: ∀ {o h} (C : Precategory o h) → Type (o ⊔ h)
is-category = is-identity-system (Isomorphism C) (λ a → id-iso C) is-category C
We set aside some helpers specifically for working with the assumption that a category is univalent.
path→iso: ∀ {o h} {C : Precategory o h} {A B}
→ A ≡ B → Isomorphism C A B
{C = C} {A} p = transport (λ i → Isomorphism C A (p i)) (id-iso C)
path→iso
module Univalent' {o h} {C : Precategory o h} (r : is-category C) where
module path→iso = Ids r
renaming ( to to iso→path
; J to J-iso
; to-refl to iso→path-id
; η to iso→path→iso
; ε to path→iso→path
)
open Cat.Reasoning C hiding (id-iso) public
open path→iso
using ( iso→path ; J-iso ; iso→path-id ; iso→path→iso ; path→iso→path )
public
Furthermore, since the h-level of the relation behind an identity system determines the h-level of the type it applies to, we have that the space of objects in any univalent category is a groupoid:
: is-groupoid ⌞ C ⌟
Ob-is-groupoid = path→iso.hlevel 2 λ _ _ → hlevel 2 Ob-is-groupoid
We can characterise transport in the Hom-sets of categories using the
path→iso
equivalence. Transporting
in
is equivalent to turning the paths into isomorphisms and
pre/post-composing:
module _ {o h} (C : Precategory o h) where
open Cat.Reasoning C hiding (id-iso ; Isomorphism)
: ∀ {A B C D} (p : A ≡ C) (q : B ≡ D) (h : Hom A B)
Hom-transport → transport (λ i → Hom (p i) (q i)) h
.to ∘ h ∘ path→iso p .from
≡ path→iso q {A = A} {B} {D = D} p q h i =
Hom-transport (λ j → Hom (p (i ∨ j)) (q (i ∨ j))) (∂ i) λ where
comp (i = i0) → coe0→i (λ k → Hom (p (j ∧ k)) (q (j ∧ k))) j h
j (i = i1) → path→iso q .to ∘ h ∘ path→iso p .from
j (j = i0) → hcomp (∂ i) λ where
j (i = i0) → idl (idr h j) j
j (i = i1) → q' i1 ∘ h ∘ p' i1
j (j = i0) → q' i ∘ h ∘ p' i
j where
: PathP _ id (path→iso p .from)
p' = coe0→i (λ j → Hom (p (i ∧ j)) A) i id
p' i
: PathP _ id (path→iso q .to)
q' = coe0→i (λ j → Hom B (q (i ∧ j))) i id q' i
This lets us quickly turn paths between compositions into dependent
paths in Hom
-sets.
: ∀ {A B C D} {p : A ≡ C} {q : B ≡ D} {h : Hom A B} {h' : Hom C D}
Hom-pathp → path→iso q .to ∘ h ∘ path→iso p .from ≡ h'
→ PathP (λ i → Hom (p i) (q i)) h h'
{p = p} {q} {h} {h'} prf =
Hom-pathp (subst (_≡ h') (sym (Hom-transport p q h)) prf) to-pathp
Hom-transport-id: ∀ {A C D} (p : A ≡ C) (q : A ≡ D)
→ transport (λ i → Hom (p i) (q i)) id ≡ path→iso q .to ∘ path→iso p .from
= Hom-transport p q _ ∙ ap (path→iso q .to ∘_) (idl _)
Hom-transport-id p q
Hom-transport-refll-id: ∀ {A B} (q : A ≡ B)
→ transport (λ i → Hom A (q i)) id ≡ path→iso q .to
= Hom-transport-id refl p ∙ elimr (transport-refl _)
Hom-transport-refll-id p
Hom-transport-reflr-id: ∀ {A B} (q : A ≡ B)
→ transport (λ i → Hom (q i) A) id ≡ path→iso q .from
= Hom-transport-id p refl ∙ eliml (transport-refl _)
Hom-transport-reflr-id p
:
Hom-pathp-refll ∀ {A B C} {p : A ≡ C} {h : Hom A B} {h' : Hom C B}
→ h ∘ path→iso p .from ≡ h'
→ PathP (λ i → Hom (p i) B) h h'
=
Hom-pathp-refll prf (ap₂ _∘_ (transport-refl id) refl ∙∙ idl _ ∙∙ prf)
Hom-pathp
Hom-pathp-reflr: ∀ {A B D} {q : B ≡ D} {h : Hom A B} {h' : Hom A D}
→ path→iso q .to ∘ h ≡ h'
→ PathP (λ i → Hom A (q i)) h h'
{q = q} prf =
Hom-pathp-reflr (ap (path→iso q .to ∘_) (ap₂ _∘_ refl (transport-refl _))
Hom-pathp _∘_ refl (idr _)
∙∙ ap₂ )
∙∙ prf
Hom-pathp-id: ∀ {A B C} {p : B ≡ A} {q : B ≡ C} {h' : Hom A C}
→ PathP (λ i → Hom (p i) (q i)) (id {B}) h'
→ path→iso q .to ∘ path→iso p .from ≡ h'
{p = p} {q} {h} prf =
Hom-pathp-id (λ B A p → ∀ {C} (q : B ≡ C) {h' : Hom A C}
J' → PathP (λ i → Hom (p i) (q i)) (id {B}) h'
→ path→iso q .to ∘ path→iso p .from ≡ h')
(λ x q prf → ap₂ _∘_ refl (transport-refl _) ∙∙ idr _ ∙∙ from-pathp prf)
p q prf
path→to-∙: ∀ {A B C} (p : A ≡ B) (q : B ≡ C)
→ path→iso (p ∙ q) .to ≡ path→iso q .to ∘ path→iso p .to
{A = A} p q =
path→to-∙ (λ B p → ∀ {C} (q : B ≡ C) → path→iso (p ∙ q) .to ≡ path→iso q .to ∘ path→iso p .to)
J (λ q → subst-∙ (λ e → Hom A e) refl q _
(subst (λ e → Hom A e) q) (transport-refl id)
∙ ap (idr _) ∙ ap₂ _∘_ refl (sym (transport-refl id))
∙ sym )
p q
path→from-∙: ∀ {A B C} (p : A ≡ B) (q : B ≡ C)
→ path→iso (p ∙ q) .from ≡ path→iso p .from ∘ path→iso q .from
{A = A} p q =
path→from-∙ (λ B p → ∀ {C} (q : B ≡ C) → path→iso (p ∙ q) .from ≡ path→iso p .from ∘ path→iso q .from)
J (λ q → subst-∙ (λ e → Hom e _) refl q _
(subst (λ e → Hom e _) q) (transport-refl id)
∙∙ ap (idl _) ∙ ap₂ _∘_ (sym (transport-refl id)) refl
∙∙ sym )
p q
path→iso-∙: ∀ {A B C} (p : A ≡ B) (q : B ≡ C)
→ path→iso (p ∙ q) ≡ path→iso p ∙Iso path→iso q
= ext (path→to-∙ p q)
path→iso-∙ p q
: ∀ {A B} (p : A ≡ B) → path→iso p .from ≡ path→iso (sym p) .to
path→to-sym = J (λ B p → path→iso p .from ≡ path→iso (sym p) .to) refl
path→to-sym
from-pathp-to: ∀ {A B C} (p : A ≡ B) {f g}
→ PathP (λ i → Hom C (p i)) f g
→ path→iso p .to ∘ f ≡ g
{C = C} p q =
from-pathp-to (λ B p → ∀ {f g} → PathP (λ i → Hom C (p i)) f g
J → path→iso p .to ∘ f ≡ g)
(λ q → eliml (transport-refl _) ∙ q) p q
from-pathp-from: ∀ {A B C} (p : A ≡ B) {f g}
→ PathP (λ i → Hom C (p i)) f g
→ path→iso (sym p) .from ∘ f ≡ g
{C = C} p q = ap₂ _∘_ (path→to-sym (sym p)) refl
from-pathp-from
∙ from-pathp-to p q
from-pathp-from': ∀ {A B C} (p : A ≡ B) {f g}
→ PathP (λ i → Hom (p i) C) f g
→ f ∘ path→iso p .from ≡ g
{C = C} p q =
from-pathp-from' (λ B p → ∀ {f g} → PathP (λ i → Hom (p i) C) f g
J → f ∘ path→iso p .from ≡ g)
(λ q → elimr (transport-refl _) ∙ q) p q
from-pathp-to': ∀ {A B C} (p : A ≡ B) {f g}
→ PathP (λ i → Hom (p i) C) f g
→ f ∘ path→iso (sym p) .to ≡ g
{C = C} p q = ap₂ _∘_ refl (sym (path→to-sym p))
from-pathp-to'
∙ from-pathp-from' p q
module Univalent {o h} {C : Precategory o h} (r : is-category C) where
open Univalent' r public
:
Hom-pathp-refll-iso ∀ {A B C} {p : A ≅ C} {h : Hom A B} {h' : Hom C B}
→ h ∘ p .from ≡ h'
→ PathP (λ i → Hom (iso→path p i) B) h h'
=
Hom-pathp-refll-iso prf (ap₂ _∘_ refl (ap from (iso→path→iso _)) ∙ prf)
Hom-pathp-refll C
Hom-pathp-reflr-iso: ∀ {A B D} {q : B ≅ D} {h : Hom A B} {h' : Hom A D}
→ q .to ∘ h ≡ h'
→ PathP (λ i → Hom A (iso→path q i)) h h'
=
Hom-pathp-reflr-iso prf (ap₂ _∘_ (ap to (iso→path→iso _)) refl ∙ prf)
Hom-pathp-reflr C
Hom-pathp-iso: ∀ {A B C D} {p : A ≅ C} {q : B ≅ D} {h : Hom A B} {h' : Hom C D}
→ q .to ∘ h ∘ p .from ≡ h'
→ PathP (λ i → Hom (iso→path p i) (iso→path q i)) h h'
{p = p} {q} {h} {h'} prf =
Hom-pathp-iso (ap₂ _∘_ (ap to (iso→path→iso _))
Hom-pathp C (ap₂ _∘_ refl (ap from (iso→path→iso _)))
) ∙ prf