module Cat.Instances.StrictCat where
open Product
open is-product
open Precategory
open Functor
private variable
: Level o h
The category of strict categories🔗
Recall that a precategory is said strict
if its space of objects is a Set
. While general
precategories are too homotopically interesting to fit into a Precategory
(because functor spaces will
not, in general, be h-sets), the strict categories do form a
precategory, which we denote
private unquoteDecl eqv = declare-record-iso eqv (quote Functor)
: ∀ {o h} {C D : Precategory o h} → is-set (Ob D)
Functor-is-set → is-set (Functor C D)
{o = o} {h} {C} {D} dobset = Iso→is-hlevel! 2 eqv where instance
Functor-is-set : H-Level (Ob D) 2
Dob = basic-instance 2 dobset Dob
: ∀ o h → Precategory _ _
Strict-cats .Ob = Σ[ C ∈ Precategory o h ] (is-strict C)
Strict-cats o h .Hom (C , _) (D , _) = Functor C D
Strict-cats o h .id = Id
Strict-cats o h ._∘_ = _F∘_
Strict-cats o h .idr _ = Functor-path (λ _ → refl) λ _ → refl
Strict-cats o h .idl _ = Functor-path (λ _ → refl) λ _ → refl
Strict-cats o h .assoc _ _ _ = Functor-path (λ _ → refl) λ _ → refl Strict-cats o h
This assembles into a Precategory
because the only bit of a
Functor
that doesn’t have a fixed
h-level is the object mapping; By asking that D
be a strict category, this fixes the
functors to be sets.
.Hom-set _ (D , dset) = Functor-is-set dset Strict-cats o h
Products🔗
We prove that Strict-cats
has
products. This is because
is
and h-levels are closed under products.
Strict-cats-products: {C D : Precategory o h}
→ (cob : is-set (Ob C)) (dob : is-set (Ob D))
→ Product (Strict-cats o h) (C , cob) (D , dob)
{C = C} {D = D} cob dob = prod where
Strict-cats-products : Product (Strict-cats _ _) (C , cob) (D , dob)
prod .apex = C ×ᶜ D , ×-is-hlevel 2 cob dob
prod .π₁ = Fst {C = C} {D = D}
prod .π₂ = Snd {C = C} {D = D}
prod .has-is-product .⟨_,_⟩ p q = Cat⟨ p , q ⟩
prod .has-is-product .π₁∘⟨⟩ = Functor-path (λ _ → refl) λ _ → refl
prod .has-is-product .π₂∘⟨⟩ = Functor-path (λ _ → refl) λ _ → refl
prod .has-is-product .unique p q =
prod (λ x i → F₀ (p i) x , F₀ (q i) x) λ f i → F₁ (p i) f , F₁ (q i) f Functor-path