module Algebra.Group whereGroupsπ
A group is a monoid that has inverses for every element. The inverse for an element is, necessarily, unique; thus, to say that β is a groupβ is a statement about having a certain property (namely, being a group), not structure on
Furthermore, since group homomorphisms automatically preserve this structure, we are justified in calling this property rather than property-like structure.
In particular, for a binary operator to be a group operator, it has
to be a monoid, meaning it must have a
unit.
record is-group {β} {A : Type β} (_*_ : A β A β A) : Type β where
no-eta-equality
field
unit : AThere is also a map which assigns to each element
its inverse
and this inverse must multiply with
to give the unit, both on the left and on the right:
inverse : A β A
has-is-monoid : is-monoid unit _*_
inversel : {x : A} β inverse x * x β‘ unit
inverser : {x : A} β x * inverse x β‘ unit
open is-monoid has-is-monoid public infixr 20 _β_
_β_ : A β A β A
x β y = x * inverse y
abstract
inv-unit : inverse unit β‘ unit
inv-unit = monoid-inverse-unique
has-is-monoid unit _ _ inversel (has-is-monoid .is-monoid.idl)
inv-inv : β {x} β inverse (inverse x) β‘ x
inv-inv = monoid-inverse-unique
has-is-monoid _ _ _ inversel inversel
inv-comm : β {x y} β inverse (x * y) β‘ inverse y β x
inv-comm {x = x} {y} =
monoid-inverse-unique has-is-monoid _ _ _ inversel p
where
p : (x * y) * (inverse y β x) β‘ unit
p = associative has-is-monoid
ββ apβ _*_
( sym (associative has-is-monoid)
ββ apβ _*_ refl inverser
ββ has-is-monoid .is-monoid.idr)
refl
ββ inverser
zero-diff : β {x y} β x β y β‘ unit β x β‘ y
zero-diff {x = x} {y = y} p =
monoid-inverse-unique has-is-monoid _ _ _ p inversel
underlying-monoid : Monoid β
underlying-monoid = A , record
{ identity = unit ; _β_ = _*_ ; has-is-monoid = has-is-monoid }
open Mon underlying-monoid publicNote that any element of determines two bijections on the underlying set of by multiplication with on the left and on the right. The inverse of this bijection is given by multiplication with and the proof that these are in fact inverse functions are given by the group laws:
β-equivl : β x β is-equiv (x *_)
β-equivl x = is-isoβis-equiv (iso (inverse x *_)
(Ξ» _ β cancell inverser) Ξ» _ β cancell inversel)
β-equivr : β y β is-equiv (_* y)
β-equivr y = is-isoβis-equiv (iso (_* inverse y)
(Ξ» _ β cancelr inversel) Ξ» _ β cancelr inverser)is-group is propositionalπ
Showing that is-group takes
values in propositions is straightforward, but, fortunately, very easy
to automate: Our automation takes care of all the propositional
components, and weβve already established that units and inverses (thus
inverse-assigning maps) are unique in a monoid.
private unquoteDecl eqv = declare-record-iso eqv (quote is-group)
is-group-is-prop : β {β} {A : Type β} {_*_ : A β A β A}
β is-prop (is-group _*_)
is-group-is-prop {A = A} x y = Iso.injective eqv $
1x=1y
,β funext (Ξ» a β
monoid-inverse-unique x.has-is-monoid a _ _
x.inversel
(y.inverser β sym 1x=1y))
,β prop!
where
module x = is-group x
module y = is-group y hiding (magma-hlevel)
A-hl : β {n} β H-Level A (2 + n)
A-hl = basic-instance {T = A} 2 (x .is-group.has-is-set)
1x=1y = identities-equal _ _
(is-monoidβis-unital-magma x.has-is-monoid)
(is-monoidβis-unital-magma y.has-is-monoid)
instance
H-Level-is-group
: β {β} {G : Type β} {_+_ : G β G β G} {n}
β H-Level (is-group _+_) (suc n)
H-Level-is-group = prop-instance is-group-is-propGroup homomorphismsπ
In contrast with monoid homomorphisms, for group homomorphisms, it is not necessary for the underlying map to explicitly preserve the unit (and the inverses); It is sufficient for the map to preserve the multiplication.
As a stepping stone, we define what it means to equip a type with a
group structure: a group structure on a type.
record Group-on {β} (A : Type β) : Type β where
field
_β_ : A β A β A
has-is-group : is-group _β_
infixr 20 _β_
infixl 35 _β»ΒΉ
_β»ΒΉ : A β A
x β»ΒΉ = has-is-group .is-group.inverse x
open is-group has-is-group publicWe have that a map is a group homomorphism if it preserves the multiplication.
record
is-group-hom
{β β'} {A : Type β} {B : Type β'}
(G : Group-on A) (G' : Group-on B) (e : A β B) : Type (β β β') where
private
module A = Group-on G
module B = Group-on G'
field
pres-β : (x y : A) β e (x A.β y) β‘ e x B.β e yA tedious calculation shows that this is sufficient to preserve the identity and inverses:
private
1A = A.unit
1B = B.unit
pres-id : e 1A β‘ 1B
pres-id =
e 1A β‘β¨ sym B.idr β©
e 1A B.β β 1B β β‘Λβ¨ apΒ‘ B.inverser β©
e 1A B.β (e 1A B.β e 1A) β‘β¨ B.associative β©
β e 1A B.β e 1A β B.β e 1A β‘β¨ ap! (sym (pres-β _ _) β ap e A.idl) β©
e 1A B.β e 1A β‘β¨ B.inverser β©
1B β
pres-inv : β {x} β e (A.inverse x) β‘ B.inverse (e x)
pres-inv {x} =
monoid-inverse-unique B.has-is-monoid (e x) _ _
(sym (pres-β _ _) ββ ap e A.inversel ββ pres-id)
B.inverser
pres-diff : β {x y} β e (x A.β y) β‘ e x B.β e y
pres-diff {x} {y} =
e (x A.β y) β‘β¨ pres-β _ _ β©
e x B.β β e (A.inverse y) β β‘β¨ ap! pres-inv β©
e x B.β e y βis-group-hom-is-prop
: β {β β'} {A : Type β} {B : Type β'}
{G : Group-on A} {H : Group-on B} {f}
β is-prop (is-group-hom G H f)
is-group-hom-is-prop {H = H} a b i .is-group-hom.pres-β x y =
Group-on.has-is-set H _ _ (a .is-group-hom.pres-β x y) (b .is-group-hom.pres-β x y) i
instance
H-Level-group-hom
: β {n} {β β'} {A : Type β} {B : Type β'}
{G : Group-on A} {H : Group-on B} {f}
β H-Level (is-group-hom G H f) (suc n)
H-Level-group-hom = prop-instance is-group-hom-is-propAn equivalence is
an equivalence of groups when its underlying map is a group
homomorphism.
Groupβ
: β {β} (A B : Ξ£ (Type β) Group-on) (e : A .fst β B .fst) β Type β
Groupβ A B (f , _) = is-group-hom (A .snd) (B .snd) f
Group[_β_] : β {β} (A B : Ξ£ (Type β) Group-on) β Type β
Group[ A β B ] = Ξ£ (A .fst β B .fst) (is-group-hom (A .snd) (B .snd))Making groupsπ
Since the interface of Group-on
is very deeply nested, we introduce a helper function for arranging the
data of a group into a record.
record make-group {β} (G : Type β) : Type β where
no-eta-equality
field
group-is-set : is-set G
unit : G
mul : G β G β G
inv : G β G
assoc : β x y z β mul x (mul y z) β‘ mul (mul x y) z
invl : β x β mul (inv x) x β‘ unit
idl : β x β mul unit x β‘ x
private
invr : β x β mul x (inv x) β‘ unit
invr x =
mul x (inv x) β‘Λβ¨ idl _ β©
mul unit (mul x (inv x)) β‘Λβ¨ apβ mul (invl _) refl β©
mul (mul (inv (inv x)) (inv x)) (mul x (inv x)) β‘Λβ¨ assoc _ _ _ β©
mul (inv (inv x)) (mul (inv x) (mul x (inv x))) β‘β¨ apβ mul refl (assoc _ _ _) β©
mul (inv (inv x)) (mul (mul (inv x) x) (inv x)) β‘β¨ apβ mul refl (apβ mul (invl _) refl) β©
mul (inv (inv x)) (mul unit (inv x)) β‘β¨ apβ mul refl (idl _) β©
mul (inv (inv x)) (inv x) β‘β¨ invl _ β©
unit β
to-is-group : is-group mul
to-is-group .is-group.unit = unit
to-is-group .is-group.inverse = inv
to-is-group .is-group.inversel = invl _
to-is-group .is-group.inverser = invr _
to-is-group .is-group.has-is-monoid .is-monoid.idl {x} = idl x
to-is-group .is-group.has-is-monoid .is-monoid.idr {x} =
mul x β unit β β‘Λβ¨ apΒ‘ (invl x) β©
mul x (mul (inv x) x) β‘β¨ assoc _ _ _ β©
mul β mul x (inv x) β x β‘β¨ ap! (invr x) β©
mul unit x β‘β¨ idl x β©
x β
to-is-group .is-group.has-is-monoid .has-is-semigroup =
record { has-is-magma = record { has-is-set = group-is-set }
; associative = Ξ» {x y z} β assoc x y z
}
to-group-on : Group-on G
to-group-on .Group-on._β_ = mul
to-group-on .Group-on.has-is-group = to-is-group
open make-group using (to-is-group; to-group-on) public