module Data.Fin.Properties whereFinite sets - properties🔗
Ordering🔗
As noted in Data.Fin.Base, we’ve set up
the ordering on Fin so that we can re-use all the proofs
about the ordering on Nat.
However, there are still quite a few interesting things one can say
about skip and squish. In particular, we can prove the
simplicial identities, which characterize the interactions
between these two functions.
These lemmas might seem somewhat arbitrary and complicated, which is
true! However, they are enough to describe all the possible interactions
of skip and squish, which in turn are the building
blocks for every monotone function between Fin, so it’s not that surprising that
they would be a bit of a mess!
skip-comm : ∀ {n} (i j : Fin (suc n)) → i ≤ j
→ ∀ x → skip (weaken i) (skip j x) ≡ skip (fsuc j) (skip i x)
skip-comm i j le x with fin-view i | fin-view j | le | fin-view x
... | zero | zero | _ | _ = refl
... | zero | suc _ | _ | _ = refl
... | suc i | suc j | le | zero = refl
... | suc i | suc j | s≤s le | (suc x) = ap fsuc (skip-comm i j le x)
drop-comm : ∀ {n} (i j : Fin n) → i ≤ j
→ ∀ x → squish j (squish (weaken i) x) ≡ squish i (squish (fsuc j) x)
drop-comm i j le x with fin-view i | fin-view j | le | fin-view x
... | zero | zero | le | zero = refl
... | zero | zero | le | suc x = refl
... | zero | suc j | le | zero = refl
... | zero | suc j | le | suc x = refl
... | suc i | suc j | le | zero = refl
... | suc i | suc j | s≤s le | suc x = ap fsuc (drop-comm i j le x)
squish-skip-comm : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i < fsuc j
→ ∀ x → squish (fsuc j) (skip (weaken i) x) ≡ skip i (squish j x)
squish-skip-comm i j le x with fin-view i | fin-view j | le | fin-view x
... | zero | zero | s≤s p | zero = refl
... | zero | zero | s≤s p | suc _ = refl
... | zero | suc _ | s≤s p | zero = refl
... | zero | suc _ | s≤s p | suc _ = refl
... | suc i | (suc j) | (Nat.s≤s p) | zero = refl
... | suc i | (suc j) | (Nat.s≤s p) | (suc x) =
ap fsuc (squish-skip-comm i j p x)
squish-skip : ∀ {n} (i j : Fin n) → i ≡ j
→ ∀ x → squish j (skip (weaken j) x) ≡ x
squish-skip i j p x with fin-view i | fin-view j | fin-view x
... | zero | zero | x = refl
... | zero | (suc j) | x = absurd (fzero≠fsuc p)
... | (suc i) | zero | x = refl
... | (suc i) | (suc j) | zero = refl
... | (suc i) | (suc j) | (suc x) =
ap fsuc (squish-skip i j (fsuc-inj p) x)
squish-skip-fsuc : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i ≡ fsuc j
→ ∀ x → squish j (skip i x) ≡ x
squish-skip-fsuc i j p x with fin-view i | fin-view j | fin-view x
... | zero | zero | x = refl
... | zero | suc j | x = absurd (fzero≠fsuc p)
... | suc i | suc j | zero = refl
... | suc i | suc j | suc x = ap fsuc (squish-skip-fsuc i j (fsuc-inj p) x)
... | suc i | zero | x with fin-view i | x
... | zero | zero = refl
... | zero | suc x = refl
... | suc i | zero = refl
... | suc i | suc x = absurd (Nat.zero≠suc λ i → Nat.pred (p (~ i) .lower))
Fin-suc : ∀ {n} → Fin (suc n) ≃ Maybe (Fin n)
Fin-suc = Iso→Equiv (to , iso from ir il) where
to : ∀ {n} → Fin (suc n) → Maybe (Fin n)
to i with fin-view i
... | suc i = just i
... | zero = nothing
from : ∀ {n} → Maybe (Fin n) → Fin (suc n)
from (just x) = fsuc x
from nothing = fzero
ir : is-right-inverse from to
ir nothing = refl
ir (just x) = refl
il : is-left-inverse from to
il i with fin-view i
... | suc i = refl
... | zero = refl
Fin-peel : ∀ {l k} → Fin (suc l) ≃ Fin (suc k) → Fin l ≃ Fin k
Fin-peel {l} {k} sl≃sk = Maybe-injective (Equiv.inverse Fin-suc ∙e sl≃sk ∙e Fin-suc)
Fin-injective : ∀ {l k} → Fin l ≃ Fin k → l ≡ k
Fin-injective {zero} {zero} l≃k = refl
Fin-injective {zero} {suc k} l≃k with equiv→inverse (l≃k .snd) fzero
... | ()
Fin-injective {suc l} {zero} l≃k with l≃k .fst fzero
... | ()
Fin-injective {suc l} {suc k} sl≃sk = ap suc $ Fin-injective (Fin-peel sl≃sk)
avoid-injective
: ∀ {n} (i : Fin (suc n)) {j k : Fin (suc n)} {i≠j : i ≠ j} {i≠k : i ≠ k}
→ avoid i j i≠j ≡ avoid i k i≠k → j ≡ k
avoid-injective i {j} {k} {i≠j} {i≠k} p with fin-view i | fin-view j | fin-view k
... | zero | zero | _ = absurd (i≠j refl)
... | zero | suc j | zero = absurd (i≠k refl)
... | zero | suc j | suc k = ap fsuc p
... | suc i | zero | zero = refl
avoid-injective {suc n} _ p | suc i | zero | suc k = absurd (fzero≠fsuc p)
avoid-injective {suc n} _ p | suc i | suc j | zero = absurd (fsuc≠fzero p)
avoid-injective {suc n} _ p | suc i | suc j | suc k = ap fsuc (avoid-injective {n} i {j} {k} (fsuc-inj p))
skip-injective
: ∀ {n} (i : Fin (suc n)) (j k : Fin n)
→ skip i j ≡ skip i k → j ≡ k
skip-injective i j k p with fin-view i | fin-view j | fin-view k
... | zero | j | k = fsuc-inj p
... | suc i | zero | zero = refl
... | suc i | zero | suc k = absurd (fzero≠fsuc p)
... | suc i | suc j | zero = absurd (fsuc≠fzero p)
... | suc i | suc j | suc k = ap fsuc (skip-injective i j k (fsuc-inj p))
skip-skips
: ∀ {n} (i : Fin (suc n)) (j : Fin n)
→ skip i j ≠ i
skip-skips i j p with fin-view i | fin-view j
... | zero | j = fsuc≠fzero p
... | suc i | zero = fzero≠fsuc p
... | suc i | suc j = skip-skips i j (fsuc-inj p)
avoid-skip
: ∀ {n} (i : Fin (suc n)) (j : Fin n) {neq : i ≠ skip i j}
→ avoid i (skip i j) neq ≡ j
avoid-skip i j with fin-view i | fin-view j
... | zero | zero = refl
... | zero | suc j = refl
... | suc i | zero = refl
... | suc i | suc j = ap fsuc (avoid-skip i j)
skip-avoid
: ∀ {n} (i : Fin (suc n)) (j : Fin (suc n)) {i≠j : i ≠ j}
→ skip i (avoid i j i≠j) ≡ j
skip-avoid i j {i≠j} with fin-view i | fin-view j
... | zero | zero = absurd (i≠j refl)
skip-avoid {suc n} _ _ | zero | suc j = refl
skip-avoid {suc n} _ _ | suc i | zero = refl
skip-avoid {suc n} _ _ | suc i | suc j = ap fsuc (skip-avoid i j)Iterated products and sums🔗
We can break down and over finite sets as iterated products and sums, respectively.
Fin-suc-Π
: ∀ {ℓ} {n} {A : Fin (suc n) → Type ℓ}
→ (∀ x → A x) ≃ (A fzero × (∀ x → A (fsuc x)))
Fin-suc-Π = Iso→Equiv λ where
.fst f → f fzero , (λ x → f (fsuc x))
.snd .is-iso.from (z , s) → fin-cons z s
.snd .is-iso.rinv x → refl
.snd .is-iso.linv k i fzero → k (fin zero ⦃ forget auto ⦄)
.snd .is-iso.linv k i (fin (suc n) ⦃ b ⦄) → k (fin (suc n) ⦃ b ⦄)
Fin-suc-Σ
: ∀ {ℓ} {n} {A : Fin (suc n) → Type ℓ}
→ Σ (Fin (suc n)) A ≃ (A fzero ⊎ Σ (Fin n) (A ∘ fsuc))
Fin-suc-Σ {A = A} = Iso→Equiv (to , iso from ir il) where
to : ∫ₚ A → A fzero ⊎ ∫ₚ (A ∘ fsuc)
to (i , a) with fin-view i
... | zero = inl a
... | suc x = inr (x , a)
from : A fzero ⊎ ∫ₚ (A ∘ fsuc) → ∫ₚ A
from (inl x) = fzero , x
from (inr (x , a)) = fsuc x , a
ir : is-right-inverse from to
ir (inl x) = refl
ir (inr x) = refl
il : is-left-inverse from to
il (i , a) with fin-view i
... | zero = refl
... | suc _ = reflFinite choice🔗
An important fact about the (standard) finite sets in constructive
mathematics is that they always support choice, which we phrase
below as a “search” operator: if
is any Monoidal functor on types,
then it commutes with products. Since
over
are
iterated products, we have
that
commutes with
Fin-Monoidal
: ∀ {ℓ} n {A : Fin n → Type ℓ} {M}
(let module M = Effect M)
→ ⦃ Monoidal M ⦄
→ (∀ x → M.₀ (A x)) → M.₀ (∀ x → A x)
Fin-Monoidal zero _ = invmap (λ _ ()) _ munit
Fin-Monoidal (suc n) k =
Fin-suc-Π e⁻¹ <≃> (k 0 <,> Fin-Monoidal n (k ∘ fsuc))_ = IdiomIn particular, instantiating
with the propositional truncation
(which is an Idiom and hence Monoidal), we get a version of the axiom of choice for finite
sets.
finite-choice
: ∀ {ℓ} n {A : Fin n → Type ℓ}
→ (∀ x → ∥ A x ∥) → ∥ (∀ x → A x) ∥
finite-choice n = Fin-Monoidal nAn immediate consequence is that surjections into a finite set (thus, between finite sets) merely split:
finite-surjection-split
: ∀ {ℓ} {n} {B : Type ℓ}
→ (f : B → Fin n) → is-surjective f
→ ∥ (∀ x → fibre f x) ∥
finite-surjection-split f = finite-choice _Dually, we have that any Alternative functor
commutes with
on finite sets, since those are iterated sums.
Fin-Alternative
: ∀ {ℓ} n {A : Fin n → Type ℓ} {M}
(let module M = Effect M)
→ ⦃ Alternative M ⦄
→ (∀ x → M.₀ (A x)) → M.₀ (Σ (Fin n) A)
Fin-Alternative zero _ = invmap (λ ()) (λ ()) empty
Fin-Alternative (suc n) k =
Fin-suc-Σ e⁻¹ <≃> (k 0 <+> Fin-Alternative n (k ∘ fsuc))As a consequence, instantiating
with Dec, we get that finite sets
are exhaustible and omniscient, which
means that any family of decidable types indexed by a finite sets yields
decidable
and
respectively.
instance
Dec-Fin-∀
: ∀ {n ℓ} {A : Fin n → Type ℓ}
→ ⦃ ∀ {x} → Dec (A x) ⦄ → Dec (∀ x → A x)
Dec-Fin-∀ {n} ⦃ d ⦄ = Fin-Monoidal n (λ _ → d)
Dec-Fin-Σ
: ∀ {n ℓ} {A : Fin n → Type ℓ}
→ ⦃ ∀ {x} → Dec (A x) ⦄ → Dec (Σ (Fin n) A)
Dec-Fin-Σ {n} ⦃ d ⦄ = Fin-Alternative n λ _ → dFin-omniscience
: ∀ {n ℓ} (P : Fin n → Type ℓ) ⦃ _ : ∀ {x} → Dec (P x) ⦄
→ (Σ[ j ∈ Fin n ] P j × ∀ k → P k → j ≤ k) ⊎ (∀ x → ¬ P x)
Fin-omniscience {zero} P = inr λ ()
Fin-omniscience {suc n} P with holds? (P 0)
... | yes here = inl (0 , here , λ _ _ → 0≤x)
... | no ¬here with Fin-omniscience (P ∘ fsuc)
... | inl (ix , pix , least) = inl (fsuc ix , pix , fin-cons (λ here → absurd (¬here here)) λ i pi → Nat.s≤s (least i pi))
... | inr nowhere = inr (fin-cons ¬here nowhere)Fin-omniscience-neg
: ∀ {n ℓ} (P : Fin n → Type ℓ) ⦃ _ : ∀ {x} → Dec (P x) ⦄
→ (∀ x → P x) ⊎ (Σ[ j ∈ Fin n ] ¬ P j × ∀ k → ¬ P k → j ≤ k)
Fin-omniscience-neg P with Fin-omniscience (¬_ ∘ P)
... | inr p = inl λ i → dec→dne (p i)
... | inl (j , ¬pj , least) = inr (j , ¬pj , least)
Fin-find
: ∀ {n ℓ} {P : Fin n → Type ℓ} ⦃ _ : ∀ {x} → Dec (P x) ⦄
→ ¬ (∀ x → P x)
→ Σ[ x ∈ Fin n ] ¬ P x × ∀ y → ¬ P y → x ≤ y
Fin-find {P = P} ¬p with Fin-omniscience-neg P
... | inl p = absurd (¬p p)
... | inr p = pInjections and surjections🔗
The standard finite sets are Dedekind-finite, which means that every injection is a bijection. We prove this by a straightforward but annoying induction on
Fin-injection→equiv
: ∀ {n} (f : Fin n → Fin n)
→ injective f → is-equiv f
Fin-injection→equiv {zero} f inj .is-eqv ()
Fin-injection→equiv {suc n} f inj .is-eqv i with f 0 ≡? i
... | yes p = contr (0 , p) λ (j , p') → Σ-prop-path! (inj (p ∙ sym p'))
... | no ¬p = contr fib cen where
rec = Fin-injection→equiv {n}
(λ x → avoid (f 0) (f (fsuc x)) (Nat.zero≠suc ∘ ap lower ∘ inj))
(λ p → fsuc-inj (inj (avoid-injective (f 0) p)))
.is-eqv (avoid (f 0) i ¬p)
fib : fibre f i
fib = fsuc (rec .centre .fst) , avoid-injective (f 0) (rec .centre .snd)
cen : ∀ x → fib ≡ x
cen (i , p) with fin-view i
... | zero = absurd (¬p p)
... | suc j = Σ-prop-path! (ap (fsuc ∘ fst)
(rec .paths (j , ap₂ (avoid (f 0)) p prop!)))Since every surjection between finite sets splits, any surjection has an injective right inverse, which is thus a bijection; by general properties of equivalences, this implies that is also a bijection.
Fin-surjection→equiv
: ∀ {n} (f : Fin n → Fin n)
→ is-surjective f → is-equiv f
Fin-surjection→equiv f surj = case finite-surjection-split f surj of λ split →
left-inverse→equiv (snd ∘ split)
(Fin-injection→equiv (fst ∘ split)
(right-inverse→injective f (snd ∘ split)))Vector operations🔗
avoid-insert
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ (j : Fin (suc n))
→ (i≠j : i ≠ j)
→ (ρ [ i ≔ a ]) j ≡ ρ (avoid i j i≠j)
avoid-insert ρ i a j i≠j with fin-view i | fin-view j
... | zero | zero = absurd (i≠j refl)
... | zero | suc j = refl
avoid-insert {suc n} ρ _ a _ _ | suc i | zero = refl
avoid-insert {suc n} ρ _ a _ i≠j | suc i | suc j =
avoid-insert (ρ ∘ fsuc) i a j (i≠j ∘ ap fsuc)
insert-lookup
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ (ρ [ i ≔ a ]) i ≡ a
insert-lookup {n = n} ρ i a with fin-view i
... | zero = refl
insert-lookup {n = suc n} ρ _ a | suc i = insert-lookup (ρ ∘ fsuc) i a
delete-insert
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ ∀ j → delete (ρ [ i ≔ a ]) i j ≡ ρ j
delete-insert ρ i a j with fin-view i | fin-view j
... | zero | j = refl
... | suc i | zero = refl
... | suc i | (suc j) = delete-insert (ρ ∘ fsuc) i a j
insert-delete
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin (suc n) → A)
→ (i : Fin (suc n)) (a : A)
→ ρ i ≡ a
→ ∀ j → ((delete ρ i) [ i ≔ a ]) j ≡ ρ j
insert-delete ρ i a p j with fin-view i | fin-view j
... | zero | zero = sym p
... | zero | suc j = refl
insert-delete {suc n} ρ _ a p _ | suc i | zero = refl
insert-delete {suc n} ρ _ a p _ | suc i | suc j = insert-delete (ρ ∘ fsuc) i a p j
ℕ< : Nat → Type
ℕ< n = Σ[ k ∈ Nat ] k Nat.< n
from-ℕ< : ∀ {n} → ℕ< n → Fin n
from-ℕ< (i , p) = fin i ⦃ forget p ⦄
to-ℕ< : ∀ {n} → Fin n → ℕ< n
to-ℕ< (fin i ⦃ forget p ⦄) = i , recover p
fsuc-is-embedding : ∀ {n} → is-embedding (fsuc {n})
fsuc-is-embedding = injective→is-embedding! fsuc-inj