module Cat.Displayed.Functor whereDisplayed and fibred functorsπ
If you have a pair of categories displayed over a common base category it makes immediate sense to talk about functors youβd have an assignment of objects and an assignment of morphisms
which makes sense because lies over just as did, that a morphism is allowed to lie over a morphism But, in the spirit of relativising category theory, it makes more sense to consider functors between categories displayed over different bases, as in
with our displayed functor lying over an ordinary functor to mediate between the bases.
module
_ {o β o' β' oβ ββ oβ' ββ'}
{A : Precategory o β}
{B : Precategory oβ ββ}
(β° : Displayed A o' β')
(β± : Displayed B oβ' ββ')
(F : Functor A B)
where
private
module F = Functor F
module A = CR A
module B = CR B
module β° = Displayed β°
module β± = Displayed β±
module Eβ {x} = Precategory (Fibre β° x) using (_β_)
module Fβ {x} = Precategory (Fibre β± x) using (_β_)
lvl : Level
lvl = o β o' β oβ' β β β β' β ββ' record Displayed-functor : Type lvl where
no-eta-equality
field
Fβ' : β {x} (o : β°.Ob[ x ]) β β±.Ob[ F.β x ]
Fβ' : β {a b} {f : A.Hom a b} {a' b'}
β β°.Hom[ f ] a' b' β β±.Hom[ F.β f ] (Fβ' a') (Fβ' b')In order to state the displayed functoriality laws, we require functoriality for our mediating functor Functors between categories displayed over the same base can be recovered as the βvertical displayed functorsβ, i.e., those lying over the identity functor.
F-id' : β {x} {o : β°.Ob[ x ]}
β PathP (Ξ» i β β±.Hom[ F.F-id i ] (Fβ' o) (Fβ' o))
(Fβ' β°.id') β±.id'
F-β' : β {a b c} {f : A.Hom b c} {g : A.Hom a b} {a' b' c'}
{f' : β°.Hom[ f ] b' c'} {g' : β°.Hom[ g ] a' b'}
β PathP (Ξ» i β β±.Hom[ F.F-β f g i ] (Fβ' a') (Fβ' c'))
(Fβ' (f' β°.β' g'))
(Fβ' f' β±.β' Fβ' g')
β' = Fβ'
β' = Fβ'Note that, if and are fibred categories over their bases (rather than just displayed categories), then the appropriate notion of 1-cell are displayed functors that take Cartesian morphisms to Cartesian morphisms:
module
_ {o β o' β' oβ ββ oβ' ββ'}
{A : Precategory o β}
{B : Precategory oβ ββ}
{β° : Displayed A o' β'}
{β± : Displayed B oβ' ββ'}
{F : Functor A B}
where
private
module F = Functor F
module A = CR A
module B = CR B
module β° = Displayed β°
module β± = Displayed β±
lvl : Level
lvl = o β o' β oβ' β β β β' β ββ' is-fibred-functor : Displayed-functor β° β± F β Type _
is-fibred-functor F' =
β {a b a' b'} {f : A.Hom a b} (f' : β°.Hom[ f ] a' b')
β is-cartesian β° f f' β is-cartesian β± (F.β f) (Fβ' f')
where open Displayed-functor F'module
_ {o β o' β' oβ ββ oβ' ββ'}
{A : Precategory o β}
{B : Precategory oβ ββ}
(β° : Displayed A o' β')
(β± : Displayed B oβ' ββ')
(F : Functor A B)
where
private
module F = Functor F
module A = CR A
module B = CR B
module β° = Displayed β°
module β± = Displayed β±
lvl : Level
lvl = o β o' β oβ' β β β β' β ββ' record Fibred-functor : Type (lvl β oβ β ββ) where
no-eta-equality
field
disp : Displayed-functor β° β± F
F-cartesian : is-fibred-functor disp
open Displayed-functor disp publicOne can also define the composition of displayed functors, which lies over the composition of the underlying functors.
module
_ {oa βa ob βb oc βc oe βe of βf oh βh}
{A : Precategory oa βa}
{B : Precategory ob βb}
{C : Precategory oc βc}
{β° : Displayed A oe βe}
{β± : Displayed B of βf}
{β : Displayed C oh βh}
{F : Functor B C} {G : Functor A B}
where
private
module A = Precategory A
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
module β = Displayed β
module F = Functor F
module G = Functor G
open DR β
open Displayed-functor
infixr 30 _Fβ'_ _Fβ'_
: Displayed-functor β± β F
β Displayed-functor β° β± G
β Displayed-functor β° β (F Fβ G)
(F' Fβ' G') .Fβ' x = F' .Fβ' (G' .Fβ' x)
(F' Fβ' G') .Fβ' f = F' .Fβ' (G' .Fβ' f)
(F' Fβ' G') .F-id' = to-pathp $
hom[] (F' .Fβ' (G' .Fβ' β°.id')) β‘β¨ reindex _ _ β sym (hom[]-β (ap F.Fβ G.F-id) F.F-id) β©
hom[] (hom[] (F' .Fβ' (G' .Fβ' β°.id'))) β‘β¨ ap hom[] (shiftl _ Ξ» i β F' .Fβ' (G' .F-id' i)) β©
hom[] (F' .Fβ' β±.id') β‘β¨ from-pathp (F' .F-id') β©
β.id' β
(F' Fβ' G') .F-β' {f = f} {g = g} {f' = f'} {g' = g'} = to-pathp $
hom[] (F' .Fβ' (G' .Fβ' (f' β°.β' g'))) β‘β¨ reindex _ _ β sym (hom[]-β (ap F.Fβ (G.F-β f g)) (F.F-β (G.β f) (G.β g))) β©
hom[] (hom[] (F' .Fβ' (G' .Fβ' (f' β°.β' g')))) β‘β¨ ap hom[] (shiftl _ Ξ» i β F' .Fβ' (G' .F-β' {f' = f'} {g' = g'} i)) β©
hom[] (F' .Fβ' ((G' .Fβ' f') β±.β' (G' .Fβ' g'))) β‘β¨ from-pathp (F' .F-β') β©
F' .Fβ' (G' .Fβ' f') β.β' F' .Fβ' (G' .Fβ' g') βFurthermore, there is a displayed identity functor that lies over the identity functor.
module _
{ob βb oe βe}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
where
open Displayed-functor Id' : Displayed-functor β° β° Id
Id' .Fβ' x = x
Id' .Fβ' f = f
Id' .F-id' = refl
Id' .F-β' = reflThe identity functor is obviously fibred.
Id'-fibred : is-fibred-functor Id'
Id'-fibred f cart = cart
Idf' : Fibred-functor β° β° Id
Idf' .Fibred-functor.disp = Id'
Idf' .Fibred-functor.F-cartesian = Id'-fibredVertical functorsπ
Functors displayed over the identity functor are of particular interest. Such functors are known as vertical functors, and are commonly used to define fibrewise structure. However, they are somewhat difficult to work with if we define them directly as such, as the composite of two identity functors is not definitionally equal to the identity functor! To avoid this problem, we provide the following specialized definition.
module
_ {o β o' β' o'' β''}
{B : Precategory o β}
(β° : Displayed B o' β')
(β± : Displayed B o'' β'')
where
private
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
module F = DR β± using (hom[])
module Eβ {x} = Precategory (Fibre β° x) using (_β_)
module Fβ {x} = Precategory (Fibre β± x) using (_β_) record Vertical-functor : Type (o β β β o' β β' β o'' β β'') where
no-eta-equality
field
Fβ' : β {x} (o : β°.Ob[ x ]) β β±.Ob[ x ]
Fβ' : β {a b} {f : B.Hom a b} {a' b'}
β β°.Hom[ f ] a' b' β β±.Hom[ f ] (Fβ' a') (Fβ' b')
F-id' : β {x} {o : β°.Ob[ x ]}
β Fβ' (β°.id' {x} {o}) β‘ β±.id'
F-β' : β {a b c} {f : B.Hom b c} {g : B.Hom a b} {a' b' c'}
{f' : β°.Hom[ f ] b' c'} {g' : β°.Hom[ g ] a' b'}
β Fβ' (f' β°.β' g') β‘ Fβ' f' β±.β' Fβ' g'
β' = Fβ'
β' = Fβ' abstract
F-ββ
: β {x} {a b c : β°.Ob[ x ]} {f : β°.Hom[ B.id ] b c} {g : β°.Hom[ B.id ] a b}
β Fβ' (f Eβ.β g) β‘ Fβ' f Fβ.β Fβ' g
F-ββ {a = a} {b} {c} {f} {g} =
let
p : Fβ' (f Eβ.β g) β±.β‘[ sym (B.idl B.id) ] Fβ' (f β°.β' g)
p i = Fβ' (coe0βi (Ξ» j β β°.Hom[ B.idl B.id j ] a c) (~ i) (f β°.β' g))
in from-pathpβ» p β ap F.hom[] F-β'This definition is equivalent to a displayed functor over the identity functor.
module
_ {o β o' β' o'' β''}
{B : Precategory o β}
{β° : Displayed B o' β'}
{β± : Displayed B o'' β''}
where
private
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β± Displayed-functorβVertical-functor
: Displayed-functor β° β± Id β Vertical-functor β° β±
Displayed-functorβVertical-functor F' = V where
module F' = Displayed-functor F'
open Vertical-functor
V : Vertical-functor β° β±
V .Fβ' = F'.β'
V .Fβ' = F'.β'
V .F-id' = F'.F-id'
V .F-β' = F'.F-β'
Vertical-functorβDisplayed-functor
: Vertical-functor β° β± β Displayed-functor β° β± Id
Vertical-functorβDisplayed-functor V = F' where
module V = Vertical-functor V
open Displayed-functor
F' : Displayed-functor β° β± Id
F' .Fβ' = V.β'
F' .Fβ' = V.β'
F' .F-id' = V.F-id'
F' .F-β' = V.F-β'We also provide a specialized definition for vertical fibred functors.
is-vertical-fibred : Vertical-functor β° β± β Type _
is-vertical-fibred F' =
β {a b a' b'} {f : B.Hom a b} (f' : β°.Hom[ f ] a' b')
β is-cartesian β° f f' β is-cartesian β± f (Fβ' f')
where open Vertical-functor F' open Vertical-functor
Vertical-functor-path
: {F G : Vertical-functor β° β±}
β (p0 : β {x} β (x' : β°.Ob[ x ]) β F .Fβ' x' β‘ G .Fβ' x')
β (p1 : β {x y x' y'} {f : B.Hom x y} β (f' : β°.Hom[ f ] x' y')
β PathP (Ξ» i β β±.Hom[ f ] (p0 x' i) (p0 y' i)) (F .Fβ' f') (G .Fβ' f'))
β F β‘ G
Vertical-functor-path {F = F} {G = G} p0 p1 i .Fβ' x' = p0 x' i
Vertical-functor-path {F = F} {G = G} p0 p1 i .Fβ' f' = p1 f' i
Vertical-functor-path {F = F} {G = G} p0 p1 i .F-id' =
is-propβpathp (Ξ» i β β±.Hom[ B.id ]-set _ _ (p1 β°.id' i) β±.id')
(F .F-id')
(G .F-id') i
Vertical-functor-path {F = F} {G = G} p0 p1 i .F-β' {f' = f'} {g' = g'} =
is-propβpathp
(Ξ» i β β±.Hom[ _ ]-set _ _ (p1 (f' β°.β' g') i) (p1 f' i β±.β' p1 g' i))
(F .F-β' {f' = f'} {g' = g'})
(G .F-β' {f' = f'} {g' = g'}) imodule
_ {o β o' β' o'' β''}
{B : Precategory o β}
(β° : Displayed B o' β')
(β± : Displayed B o'' β'')
where
private
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
lvl : Level
lvl = o β β β o' β β' β o'' β β'' record Vertical-fibred-functor : Type lvl where
no-eta-equality
field
vert : Vertical-functor β° β±
F-cartesian : is-vertical-fibred vert
open Vertical-functor vert publicmodule
_ {o β o' β' o'' β''}
{B : Precategory o β}
{β° : Displayed B o' β'}
{β± : Displayed B o'' β''}
where
private
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±A functor displayed over the identity functor is fibred if and only if it is a vertical fibred functor.
is-fibredβis-vertical-fibred
: β (F' : Displayed-functor β° β± Id)
β is-fibred-functor F'
β is-vertical-fibred (Displayed-functorβVertical-functor F')
is-fibredβis-vertical-fibred F' F-fib = F-fib
is-vertical-fibredβis-fibred
: β (F' : Vertical-functor β° β±)
β is-vertical-fibred F'
β is-fibred-functor (Vertical-functorβDisplayed-functor F')
is-vertical-fibredβis-fibred F' F-fib = F-fib
FibredβVertical-fibred
: Fibred-functor β° β± Id β Vertical-fibred-functor β° β±
FibredβVertical-fibred F' .Vertical-fibred-functor.vert =
Displayed-functorβVertical-functor (Fibred-functor.disp F')
FibredβVertical-fibred F' .Vertical-fibred-functor.F-cartesian =
is-fibredβis-vertical-fibred
(Fibred-functor.disp F')
(Fibred-functor.F-cartesian F')
Vertical-FibredβVertical
: Vertical-fibred-functor β° β± β Fibred-functor β° β± Id
Vertical-FibredβVertical F' .Fibred-functor.disp =
Vertical-functorβDisplayed-functor (Vertical-fibred-functor.vert F')
Vertical-FibredβVertical F' .Fibred-functor.F-cartesian =
is-vertical-fibredβis-fibred
(Vertical-fibred-functor.vert F')
(Vertical-fibred-functor.F-cartesian F') open Vertical-fibred-functor
Vertical-fibred-functor-path
: {F G : Vertical-fibred-functor β° β±}
β (p0 : β {x} β (x' : β°.Ob[ x ]) β F .Fβ' x' β‘ G .Fβ' x')
β (p1 : β {x y x' y'} {f : B.Hom x y} β (f' : β°.Hom[ f ] x' y')
β PathP (Ξ» i β β±.Hom[ f ] (p0 x' i) (p0 y' i)) (F .Fβ' f') (G .Fβ' f'))
β F β‘ G
Vertical-fibred-functor-path {F = F} {G = G} p0 p1 i .vert =
Vertical-functor-path {F = F .vert} {G = G .vert} p0 p1 i
Vertical-fibred-functor-path {F = F} {G = G} p0 p1 i .F-cartesian f' cart =
is-propβpathp (Ξ» i β is-cartesian-is-prop β± {f' = p1 f' i})
(F .F-cartesian f' cart)
(G .F-cartesian f' cart) iAs promised, composition of vertical functors is much simpler.
module _
{ob βb oe βe of βf oh βh}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
{β± : Displayed B of βf}
{β : Displayed B oh βh}
where
open Vertical-functor
infixr 30 _βV_ _βVf_ _βV_ : Vertical-functor β± β β Vertical-functor β° β± β Vertical-functor β° β
(F' βV G') .Fβ' x' = F' .Fβ' (G' .Fβ' x')
(F' βV G') .Fβ' f' = F' .Fβ' (G' .Fβ' f')
(F' βV G') .F-id' = ap (F' .Fβ') (G' .F-id') β F' .F-id'
(F' βV G') .F-β' = ap (F' .Fβ') (G' .F-β') β (F' .F-β')Furthermore, the composite of vertical fibred functors is also fibred.
βV-fibred
: β (F' : Vertical-functor β± β) (G' : Vertical-functor β° β±)
β is-vertical-fibred F' β is-vertical-fibred G' β is-vertical-fibred (F' βV G')
βV-fibred F' G' F'-fib G'-fib f' cart = F'-fib (G' .Fβ' f') (G'-fib f' cart)
_βVf_
: Vertical-fibred-functor β± β
β Vertical-fibred-functor β° β±
β Vertical-fibred-functor β° β
(F' βVf G') .Vertical-fibred-functor.vert =
Vertical-fibred-functor.vert F' βV Vertical-fibred-functor.vert G'
(F' βVf G') .Vertical-fibred-functor.F-cartesian =
βV-fibred
(Vertical-fibred-functor.vert F')
(Vertical-fibred-functor.vert G')
(Vertical-fibred-functor.F-cartesian F')
(Vertical-fibred-functor.F-cartesian G')The identity functor is obviously fibred vertical.
module _
{ob βb oe βe}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
where IdV : Vertical-functor β° β°
IdV = Displayed-functorβVertical-functor Id'
IdV-fibred : is-vertical-fibred IdV
IdV-fibred = is-fibredβis-vertical-fibred Id' Id'-fibred
IdVf : Vertical-fibred-functor β° β°
IdVf = FibredβVertical-fibred Idf'Displayed natural transformationsπ
Just like we have defined a displayed functor lying over an ordinary functor we can define a displayed natural transformation. Assume are displayed functors over resp. and we have a natural transformation Than one can define a displayed natural transformation lying over
module
_ {o β o' β' oβ ββ oβ' ββ'}
{A : Precategory o β}
{B : Precategory oβ ββ}
{β° : Displayed A o' β'}
{β± : Displayed B oβ' ββ'}
where
private
module β° = Displayed β°
module β± = Displayed β±
open Displayed-functor
open _=>_
lvl : Level
lvl = o β o' β β β β' β ββ'
infix 20 _=[_]=>_ record _=[_]=>_ {F : Functor A B} {G : Functor A B} (F' : Displayed-functor β° β± F)
(Ξ± : F => G) (G' : Displayed-functor β° β± G)
: Type lvl where
no-eta-equality
field
Ξ·' : β {x} (x' : β°.Ob[ x ]) β β±.Hom[ Ξ± .Ξ· x ] (F' .Fβ' x') (G' .Fβ' x')
is-natural'
: β {x y f} (x' : β°.Ob[ x ]) (y' : β°.Ob[ y ]) (f' : β°.Hom[ f ] x' y')
β Ξ·' y' β±.β' F' .Fβ' f' β±.β‘[ Ξ± .is-natural x y f ] G' .Fβ' f' β±.β' Ξ·' x'Let be two vertical functors. A displayed natural transformation between and is called a vertical natural transformation if all components of the natural transformation are vertical.
module _
{ob βb oe βe of βf}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
{β± : Displayed B of βf}
where
private
open CR B
module β° = Displayed β°
module β± = Displayed β±
module Fβ {x} = CR (Fibre β± x)
open Vertical-functor
lvl : Level
lvl = ob β βb β oe β βe β βf
infix 20 _=>β_
infix 20 _=>fβ_ record _=>β_ (F' G' : Vertical-functor β° β±) : Type lvl where
no-eta-equality
field
Ξ·' : β {x} (x' : β°.Ob[ x ]) β β±.Hom[ id ] (F' .Fβ' x') (G' .Fβ' x')
is-natural'
: β {x y f} (x' : β°.Ob[ x ]) (y' : β°.Ob[ y ]) (f' : β°.Hom[ f ] x' y')
β Ξ·' y' β±.β' F' .Fβ' f' β±.β‘[ id-comm-sym ] G' .Fβ' f' β±.β' Ξ·' x' abstract
is-naturalβ
: β {x} (x' y' : β°.Ob[ x ]) (f' : β°.Hom[ id ] x' y')
β Ξ·' y' Fβ.β F' .Fβ' f' β‘ G' .Fβ' f' Fβ.β Ξ·' x'
is-naturalβ x y f = ap hom[] (from-pathpβ» (is-natural' x y f)) β sym (duplicate _ _ _) where
open DR β± using (hom[] ; duplicate)This notion of natural transformation is also the correct one for fibred vertical functors, as there is no higher structure that needs to be preserved.
_=>fβ_ : (F' G' : Vertical-fibred-functor β° β±) β Type _
F' =>fβ G' = F' .vert =>β G' .vert
where open Vertical-fibred-functor private unquoteDecl eqv = declare-record-iso eqv (quote _=>β_)
instance
Extensional-=>β
: β {βr F' G'}
β β¦ _ : Extensional (β {x} (x' : β°.Ob[ x ]) β β±.Hom[ id ] (F' .Fβ' x') (G' .Fβ' x')) βr β¦
β Extensional (F' =>β G') βr
Extensional-=>β {F' = F'} {G' = G'} β¦ e β¦ = injectionβextensional! {f = _=>β_.Ξ·'}
(Ξ» p β Iso.injective eqv (Ξ£-prop-path! p)) e
H-Level-=>β : β {F' G'} {n} β H-Level (F' =>β G') (2 + n)
H-Level-=>β = basic-instance 2 (Isoβis-hlevel 2 eqv (hlevel 2))
open _=>β_
idntβ : β {F} β F =>β F
idntβ .Ξ·' x' = β±.id'
idntβ .is-natural' x' y' f' = to-pathp (DR.id-comm[] β±)
_βntβ_ : β {F G H} β G =>β H β F =>β G β F =>β H
(f βntβ g) .Ξ·' x' = f .Ξ·' _ Fβ.β g .Ξ·' x'
_βntβ_ {F = F} {G = G} {H = H} f g .is-natural' {f = b} x' y' f' =
let open DR β± using (hom[] ; whisker-l ; duplicate ; pullr' ; extendl' ; unwhisker-r) in to-pathp (
ap hom[] (whisker-l (idl id))
ββ sym (duplicate (ap (_β b) (idl id) β id-comm-sym) _ _)
ββ ap hom[] (from-pathpβ» (pullr' id-comm-sym (g .is-natural' _ _ _)
{q = ap (_β b) (idl id) β id-comm-sym β introl refl}))
ββ sym (duplicate (eliml refl) _ _)
ββ ap hom[] (from-pathpβ» (extendl' id-comm-sym (f .is-natural' x' y' f') {q = extendl id-comm-sym}))
ββ sym (duplicate (ap (b β_) (idl id)) (eliml refl) _)
ββ unwhisker-r _ _)
module _
{ob βb oc βc od βd oe βe}
{B : Precategory ob βb}
{π : Displayed B oc βc}
{π : Displayed B od βd}
{β° : Displayed B oe βe}
{F G : Vertical-functor π β°} {H K : Vertical-functor π π}
(Ξ± : F =>β G) (Ξ² : H =>β K) where
open Vertical-functor
open _=>β_
open CR B
private module E {x} = CR (Fibre β° x) using (_β_)
_ββ_ : (F βV H) =>β (G βV K)
_ββ_ .Ξ·' x' = G .Fβ' (Ξ² .Ξ·' _) E.β Ξ± .Ξ·' _
_ββ_ .is-natural' x' y' f' = to-pathp (
ap hom[] (whisker-l (idl id))
ββ sym (duplicate (ap (_β _) (idl id) β id-comm-sym) _ _)
ββ ap hom[] (from-pathpβ» (pullr' _ (Ξ± .is-natural' _ _ _) {q = pullr id-comm-sym}))
ββ sym (duplicate (eliml refl) _ _)
ββ ap hom[] (from-pathpβ»
(extendl' _ (symP (G .F-β') β[] (apd (Ξ» i β G .Fβ') (Ξ² .is-natural' _ _ _) β[] G .F-β'))
{q = extendl id-comm-sym}))
ββ sym (duplicate (ap (_ β_) (idl id)) _ _) ββ unwhisker-r _ _)
where
open DR β° using (hom[] ; whisker-l ; duplicate ; pullr' ; extendl' ; unwhisker-r)
open Displayed β° using (_β[]_)