module Cat.Functor.Subcategory whereSubcategoriesπ
A subcategory is specified by a predicate on objects, and a predicate on morphisms between objects within that is closed under identities and composites.
To start, we package up all the data required to define a subcategory up into a record. Note that we omit the requirement that the predicate on objects is a proposition; this tends to be ill-behaved unless the is univalent.
module _ {o β} (C : Precategory o β) where
  open Cat.Reasoning C  record Subcat (o' β' : Level) : Type (o β β β lsuc o' β lsuc β') where
    no-eta-equality
    field
      is-ob : Ob β Type o'
      is-hom : β {x y} (f : Hom x y) β is-ob x β is-ob y β Type β'
      is-hom-prop
        : β {x y} (f : Hom x y) (px : is-ob x) (py : is-ob y)
        β is-prop (is-hom f px py)
      is-hom-id : β {x} β (px : is-ob x) β is-hom id px px
      is-hom-β
        : β {x y z} {f : Hom y z} {g : Hom x y}
        β {px : is-ob x} {py : is-ob y} {pz : is-ob z}
        β is-hom f py pz β is-hom g px py
        β is-hom (f β g) px pzMorphisms of wide subcategories are defined as morphisms in where holds.
module _ {o o' β β'} {C : Precategory o β} (subcat : Subcat C o' β') where
  open Cat.Reasoning C
  open Subcat subcat
  record Subcat-hom (x y : Ξ£[ ob β Ob ] (is-ob ob)) : Type (β β β') where
    no-eta-equality
    constructor sub-hom
    field
      hom : Hom (x .fst) (y .fst)
      witness : is-hom hom (x .snd) (y .snd)
open Subcat-hommodule _ {o β} {C : Precategory o β} where
  private module C = Precategory C
  instance
    Membership-subcat-ob : β {o' β'} β Membership C.Ob (Subcat C o' β') _
    Membership-subcat-ob = record { _β_ = Ξ» o S β o β S .Subcat.is-ob }
module _ {o o' β β'} {C : Precategory o β} {S : Subcat C o' β'} where
  open Cat.Reasoning C
  open Subcat S
  Subcat-hom-pathp
    : {x x' y y' : Ξ£[ ob β C ] (ob β S)}
    β {f : Subcat-hom S x y} {g : Subcat-hom S x' y'}
    β (p : x β‘ x') (q : y β‘ y')
    β PathP (Ξ» i β Hom (p i .fst) (q i .fst)) (f .hom) (g .hom)
    β PathP (Ξ» i β Subcat-hom S (p i) (q i)) f g
  Subcat-hom-pathp p q r i .hom = r i
  Subcat-hom-pathp {f = f} {g = g} p q r i .witness =
    is-propβpathp (Ξ» i β is-hom-prop (r i) (p i .snd) (q i .snd)) (f .witness) (g .witness) i
  instance
    Extensional-subcat-hom
      : β {βr x y} β¦ sa : Extensional (Hom (x .fst) (y .fst)) βr β¦
      β Extensional (Subcat-hom S x y) βr
    Extensional-subcat-hom β¦ sa β¦ = injectionβextensional!
      (Subcat-hom-pathp refl refl) sa
    Funlike-Subcat-hom
      : β {β β'} {A : Type β} {B : A β Type β'} {x y}
      β β¦ _ : Funlike (Hom (x .fst) (y .fst)) A B β¦ β Funlike (Subcat-hom S x y) A B
    Funlike-Subcat-hom β¦ i β¦ = record { _Β·_ = Ξ» f x β apply (f .hom) x }
    H-Level-Subcat-hom : β {x y n} β H-Level (Subcat-hom S x y) (2 + n)
    H-Level-Subcat-hom = basic-instance 2 $ Isoβis-hlevel 2 eqv $
      Ξ£-is-hlevel 2 (Hom-set _ _) Ξ» _ β
      is-hlevel-suc 1 (is-hom-prop _ _ _)
      where unquoteDecl eqv = declare-record-iso eqv (quote Subcat-hom)We can then use this data to construct a category.
module _ {o o' β β'} {C : Precategory o β} (subcat : Subcat C o' β') where
  open Cat.Reasoning C
  open Subcat subcat  Subcategory : Precategory (o β o') (β β β')
  Subcategory .Precategory.Ob = β«β subcat
  Subcategory .Precategory.Hom = Subcat-hom subcat
  Subcategory .Precategory.Hom-set _ _ = hlevel 2
  Subcategory .Precategory.id .hom = id
  Subcategory .Precategory.id .witness = is-hom-id _
  Subcategory .Precategory._β_ f g .hom = f .hom β g .hom
  Subcategory .Precategory._β_ f g .witness = is-hom-β (f .witness) (g .witness)
  Subcategory .Precategory.idr f = ext (idr _)
  Subcategory .Precategory.idl f = ext (idl _)
  Subcategory .Precategory.assoc f g h = ext (assoc _ _ _)From pseudomonic functorsπ
There is another way of representing subcategories: By giving a faithful functor
module _
  {o o' β β'} {C : Precategory o β} {D : Precategory o' β'}
  {F : Functor C D}
  (faithful : is-faithful F)
  where
  open Functor F
  private
    module C = Cat.Reasoning C
    module D = Cat.Reasoning DWe construct a subcategory from a faithful functor by restricting to the objects in the essential image of and restricting the morphisms to those that lie in the image of
  Faithful-subcat : Subcat D (o β β') (β β β')
  Faithful-subcat .Subcat.is-ob x = Essential-fibre F x
  Faithful-subcat .Subcat.is-hom f (y , y-es) (z , z-es) =
    Ξ£[ g β C.Hom y z ] (D.to z-es D.β Fβ g D.β D.from y-es β‘ f)
  Faithful-subcat .Subcat.is-hom-prop f (y , y-es) (z , z-es) (g , p) (h , q) =
    Ξ£-prop-path! $
    faithful $
    D.isoβepic (y-es D.Isoβ»ΒΉ) _ _ $
    D.isoβmonic z-es _ _ $
    p β sym q
  Faithful-subcat .Subcat.is-hom-id (y , y-es) =
    C.id , apβ D._β_ refl (D.eliml F-id) β D.invl y-es
  Faithful-subcat .Subcat.is-hom-β
    {f = f} {g = g} {x , x-es} {y , y-es} {z , z-es} (h , p) (i , q) =
    (h C.β i) ,
    D.push-inner (F-β h i)
    ββ D.insert-inner (D.invr y-es)
    ββ apβ D._β_ (sym (D.assoc _ _ _) β p) qThere is an equivalence between canonical subcategory associated with and
  Faithful-subcat-domain : Functor (Subcategory Faithful-subcat) C
  Faithful-subcat-domain .Functor.Fβ (x , x-es) = x-es .fst
  Faithful-subcat-domain .Functor.Fβ f = f .witness .fst
  Faithful-subcat-domain .Functor.F-id = refl
  Faithful-subcat-domain .Functor.F-β _ _ = refl
  Faithful-subcat-domain-is-ff : is-fully-faithful Faithful-subcat-domain
  Faithful-subcat-domain-is-ff {x = x , x' , x-es} {y = y , y' , y-es} =
    is-isoβis-equiv $ iso
    (Ξ» f β sub-hom (D.to y-es D.β Fβ f D.β D.from x-es) (f , refl))
    (Ξ» _ β refl)
    (Ξ» f β ext (f .witness .snd))
  Faithful-subcat-domain-is-split-eso : is-split-eso Faithful-subcat-domain
  Faithful-subcat-domain-is-split-eso x =
    (Fβ x , x , D.id-iso) , C.id-isoThere is a faithful functor from a subcategory on to
module _ {o o' β β'} {C : Precategory o β} {S : Subcat C o' β'} where
  open Cat.Reasoning C
  private module Sub = Cat.Reasoning (Subcategory S)
  open Subcat S  Forget-subcat : Functor (Subcategory S) C
  Forget-subcat .Functor.Fβ (x , _) = x
  Forget-subcat .Functor.Fβ f = f .hom
  Forget-subcat .Functor.F-id = refl
  Forget-subcat .Functor.F-β _ _ = refl
  is-faithful-Forget-subcat : is-faithful Forget-subcat
  is-faithful-Forget-subcat = extFurthermore, if the subcategory contains all of the isomorphisms of then the forgetful functor is pseudomonic.
  is-pseudomonic-Forget-subcat
    : (β {x y} {f : Hom x y} {px : x β S} {py : y β S}
       β is-invertible f β is-hom f px py)
    β is-pseudomonic Forget-subcat
  is-pseudomonic-Forget-subcat invert .is-pseudomonic.faithful =
    is-faithful-Forget-subcat
  is-pseudomonic-Forget-subcat invert .is-pseudomonic.isos-full f =
    pure $ Sub.make-iso
      (sub-hom (f .to)   (invert (isoβinvertible f)))
      (sub-hom (f .from) (invert (isoβinvertible (f Isoβ»ΒΉ))))
      (ext (f .invl))
      (ext (f .invr)) , ext reflUnivalent subcategoriesπ
Let be a univalent category. A subcategory of is univalent when the predicate on objects is a proposition.
  subcat-isoβiso : β {x y : Ξ£[ x β Ob ] (x β S)} β x Sub.β
 y β x .fst β
 y .fst
  subcat-isoβiso f = make-iso (Sub.to f .hom) (Sub.from f .hom)
    (ap hom (Sub.invl f)) (ap hom (Sub.invr f))
  subcat-is-category
    : is-category C
    β (β x β is-prop (x β S))
    β is-category (Subcategory S)
  subcat-is-category cat ob-prop .to-path {a , pa} {b , pb} f =
    Ξ£-prop-path ob-prop (cat .to-path (subcat-isoβiso f))
  subcat-is-category cat ob-prop .to-path-over p =
    Sub.β
-pathp refl _ $
    Subcat-hom-pathp refl _ $
    apd (Ξ» _ β to) (cat .to-path-over (subcat-isoβiso p))