module Algebra.Group whereGroupsπ
A group is a monoid that has inverses for every element. The inverse for an element is, necessarily, unique; thus, to say that β is a groupβ is a statement about having a certain property (namely, being a group), not structure on
Furthermore, since group homomorphisms automatically preserve this structure, we are justified in calling this property rather than property-like structure.
In particular, for a binary operator to be a group operator, it has
to be a monoid, meaning it must have a
unit.
record is-group {β} {A : Type β} (_*_ : A β A β A) : Type β where
  no-eta-equality
  field
    unit : AThere is also a map which assigns to each element
its inverse
and this inverse must multiply with
to give the unit, both on the left and on the right:
    inverse : A β A
    has-is-monoid : is-monoid unit _*_
    inversel : {x : A} β inverse x * x β‘ unit
    inverser : {x : A} β x * inverse x β‘ unit
  open is-monoid has-is-monoid public  infixr 20 _β_
  _β_ : A β A β A
  x β y = x * inverse y
  abstract
    inv-unit : inverse unit β‘ unit
    inv-unit = monoid-inverse-unique
      has-is-monoid unit _ _ inversel (has-is-monoid .is-monoid.idl)
    inv-inv : β {x} β inverse (inverse x) β‘ x
    inv-inv = monoid-inverse-unique
      has-is-monoid _ _ _ inversel inversel
    inv-comm : β {x y} β inverse (x * y) β‘ inverse y β x
    inv-comm {x = x} {y} =
      monoid-inverse-unique has-is-monoid _ _ _ inversel p
      where
        p : (x * y) * (inverse y β x) β‘ unit
        p = associative has-is-monoid
         ββ apβ _*_
              (  sym (associative has-is-monoid)
              ββ apβ _*_ refl inverser
              ββ has-is-monoid .is-monoid.idr)
              refl
         ββ inverser
    zero-diff : β {x y} β x β y β‘ unit β x β‘ y
    zero-diff {x = x} {y = y} p =
      monoid-inverse-unique has-is-monoid _ _ _ p inversel
  underlying-monoid : Monoid β
  underlying-monoid = A , record
    { identity = unit ; _β_ = _*_ ; has-is-monoid = has-is-monoid }
  open Mon underlying-monoid publicNote that any element of determines two bijections on the underlying set of by multiplication with on the left and on the right. The inverse of this bijection is given by multiplication with and the proof that these are in fact inverse functions are given by the group laws:
  β-equivl : β x β is-equiv (x *_)
  β-equivl x = is-isoβis-equiv (iso (inverse x *_)
    (Ξ» _ β cancell inverser) Ξ» _ β cancell inversel)
  β-equivr : β y β is-equiv (_* y)
  β-equivr y = is-isoβis-equiv (iso (_* inverse y)
    (Ξ» _ β cancelr inversel) Ξ» _ β cancelr inverser)is-group is propositionalπ
Showing that is-group takes
values in propositions is straightforward, but, fortunately, very easy
to automate: Our automation takes care of all the propositional
components, and weβve already established that units and inverses (thus
inverse-assigning maps) are unique in a monoid.
private unquoteDecl eqv = declare-record-iso eqv (quote is-group)
is-group-is-prop : β {β} {A : Type β} {_*_ : A β A β A}
                 β is-prop (is-group _*_)
is-group-is-prop {A = A} x y = Iso.injective eqv $
     1x=1y
  ,β funext (Ξ» a β
      monoid-inverse-unique x.has-is-monoid a _ _
        x.inversel
        (y.inverser β sym 1x=1y))
  ,β prop!
  where
    module x = is-group x
    module y = is-group y hiding (magma-hlevel)
    A-hl : β {n} β H-Level A (2 + n)
    A-hl = basic-instance {T = A} 2 (x .is-group.has-is-set)
    1x=1y = identities-equal _ _
      (is-monoidβis-unital-magma x.has-is-monoid)
      (is-monoidβis-unital-magma y.has-is-monoid)
instance
  H-Level-is-group
    : β {β} {G : Type β} {_+_ : G β G β G} {n}
    β H-Level (is-group _+_) (suc n)
  H-Level-is-group = prop-instance is-group-is-propGroup homomorphismsπ
In contrast with monoid homomorphisms, for group homomorphisms, it is not necessary for the underlying map to explicitly preserve the unit (and the inverses); It is sufficient for the map to preserve the multiplication.
As a stepping stone, we define what it means to equip a type with a
group structure: a group structure on a type.
record Group-on {β} (A : Type β) : Type β where
  field
    _β_ : A β A β A
    has-is-group : is-group _β_
  infixr 20 _β_
  infixl 35 _β»ΒΉ
  _β»ΒΉ : A β A
  x β»ΒΉ = has-is-group .is-group.inverse x
  open is-group has-is-group publicWe have that a map is a group homomorphism if it preserves the multiplication.
record
  is-group-hom
    {β β'} {A : Type β} {B : Type β'}
    (G : Group-on A) (G' : Group-on B) (e : A β B) : Type (β β β') where
  private
    module A = Group-on G
    module B = Group-on G'
  field
    pres-β : (x y : A) β e (x A.β y) β‘ e x B.β e yA tedious calculation shows that this is sufficient to preserve the identity and inverses:
  private
    1A = A.unit
    1B = B.unit
  pres-id : e 1A β‘ 1B
  pres-id =
    e 1A                       β‘β¨ sym B.idr β©
    e 1A B.β β 1B β            β‘Λβ¨ apΒ‘ B.inverser β©
    e 1A B.β (e 1A B.β e 1A)   β‘β¨ B.associative β©
    β e 1A B.β e 1A β B.β e 1A β‘β¨ ap! (sym (pres-β _ _) β ap e A.idl) β©
    e 1A B.β e 1A              β‘β¨ B.inverser β©
    1B                         β
  pres-inv : β {x} β e (A.inverse x) β‘ B.inverse (e x)
  pres-inv {x} =
    monoid-inverse-unique B.has-is-monoid (e x) _ _
      (sym (pres-β _ _) ββ ap e A.inversel ββ pres-id)
      B.inverser
  pres-diff : β {x y} β e (x A.β y) β‘ e x B.β e y
  pres-diff {x} {y} =
    e (x A.β y)                 β‘β¨ pres-β _ _ β©
    e x B.β β e (A.inverse y) β β‘β¨ ap! pres-inv β©
    e x B.β e y                 βis-group-hom-is-prop
  : β {β β'} {A : Type β} {B : Type β'}
      {G : Group-on A} {H : Group-on B} {f}
  β is-prop (is-group-hom G H f)
is-group-hom-is-prop {H = H} a b i .is-group-hom.pres-β x y =
  Group-on.has-is-set H _ _ (a .is-group-hom.pres-β x y) (b .is-group-hom.pres-β x y) i
instance
  H-Level-group-hom
    : β {n} {β β'} {A : Type β} {B : Type β'}
      {G : Group-on A} {H : Group-on B} {f}
    β H-Level (is-group-hom G H f) (suc n)
  H-Level-group-hom = prop-instance is-group-hom-is-propAn equivalence is
an equivalence of groups when its underlying map is a group
homomorphism.
Groupβ
  : β {β} (A B : Ξ£ (Type β) Group-on) (e : A .fst β B .fst) β Type β
Groupβ A B (f , _) = is-group-hom (A .snd) (B .snd) f
Group[_β_] : β {β} (A B : Ξ£ (Type β) Group-on) β Type β
Group[ A β B ] = Ξ£ (A .fst β B .fst) (is-group-hom (A .snd) (B .snd))Making groupsπ
Since the interface of Group-on
is very deeply nested, we introduce a helper function for arranging the
data of a group into a record.
record make-group {β} (G : Type β) : Type β where
  no-eta-equality
  field
    group-is-set : is-set G
    unit : G
    mul  : G β G β G
    inv  : G β G
    assoc : β x y z β mul x (mul y z) β‘ mul (mul x y) z
    invl  : β x β mul (inv x) x β‘ unit
    idl   : β x β mul unit x β‘ x
  private
    invr : β x β mul x (inv x) β‘ unit
    invr x =
      mul x (inv x)                                   β‘Λβ¨ idl _ β©
      mul unit (mul x (inv x))                        β‘Λβ¨ apβ mul (invl _) refl β©
      mul (mul (inv (inv x)) (inv x)) (mul x (inv x)) β‘Λβ¨ assoc _ _ _ β©
      mul (inv (inv x)) (mul (inv x) (mul x (inv x))) β‘β¨ apβ mul refl (assoc _ _ _) β©
      mul (inv (inv x)) (mul (mul (inv x) x) (inv x)) β‘β¨ apβ mul refl (apβ mul (invl _) refl) β©
      mul (inv (inv x)) (mul unit (inv x))            β‘β¨ apβ mul refl (idl _) β©
      mul (inv (inv x)) (inv x)                       β‘β¨ invl _ β©
      unit                                            β
  to-is-group : is-group mul
  to-is-group .is-group.unit = unit
  to-is-group .is-group.inverse = inv
  to-is-group .is-group.inversel = invl _
  to-is-group .is-group.inverser = invr _
  to-is-group .is-group.has-is-monoid .is-monoid.idl {x} = idl x
  to-is-group .is-group.has-is-monoid .is-monoid.idr {x} =
    mul x β unit β           β‘Λβ¨ apΒ‘ (invl x) β©
    mul x (mul (inv x) x)    β‘β¨ assoc _ _ _ β©
    mul β mul x (inv x) β x  β‘β¨ ap! (invr x) β©
    mul unit x               β‘β¨ idl x β©
    x                        β
  to-is-group .is-group.has-is-monoid .has-is-semigroup =
    record { has-is-magma = record { has-is-set = group-is-set }
           ; associative = Ξ» {x y z} β assoc x y z
           }
  to-group-on : Group-on G
  to-group-on .Group-on._β_ = mul
  to-group-on .Group-on.has-is-group = to-is-group
open make-group using (to-is-group; to-group-on) public