module Data.Fin.Properties whereFinite sets - properties🔗
Ordering🔗
As noted in Data.Fin.Base, we’ve set up
the ordering on Fin so that we can re-use all the proofs
about the ordering on Nat.
However, there are still quite a few interesting things one can say
about skip and squish. In particular, we can prove the
simplicial identities, which characterize the interactions
between these two functions.
These lemmas might seem somewhat arbitrary and complicated, which is
true! However, they are enough to describe all the possible interactions
of skip and squish, which in turn are the building
blocks for every monotone function between Fin, so it’s not that surprising that
they would be a bit of a mess!
skip-comm : ∀ {n} (i j : Fin (suc n)) → i ≤ j
→ ∀ x → skip (weaken i) (skip j x) ≡ skip (fsuc j) (skip i x)
skip-comm fzero j le x = refl
skip-comm (fsuc i) (fsuc j) le fzero = refl
skip-comm (fsuc i) (fsuc j) (Nat.s≤s le) (fsuc x) = ap fsuc (skip-comm i j le x)
drop-comm : ∀ {n} (i j : Fin n) → i ≤ j
→ ∀ x → squish j (squish (weaken i) x) ≡ squish i (squish (fsuc j) x)
drop-comm fzero fzero le fzero = refl
drop-comm fzero fzero le (fsuc x) = refl
drop-comm fzero (fsuc j) le fzero = refl
drop-comm fzero (fsuc j) le (fsuc x) = refl
drop-comm (fsuc i) (fsuc j) le fzero = refl
drop-comm (fsuc i) (fsuc j) (Nat.s≤s le) (fsuc x) = ap fsuc (drop-comm i j le x)
squish-skip-comm : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i < fsuc j
→ ∀ x → squish (fsuc j) (skip (weaken i) x) ≡ skip i (squish j x)
squish-skip-comm fzero j (Nat.s≤s p) x = refl
squish-skip-comm (fsuc i) (fsuc j) (Nat.s≤s p) fzero = refl
squish-skip-comm (fsuc i) (fsuc j) (Nat.s≤s p) (fsuc x) =
ap fsuc (squish-skip-comm i j p x)
squish-skip : ∀ {n} (i j : Fin n) → i ≡ j
→ ∀ x → squish j (skip (weaken j) x) ≡ x
squish-skip fzero fzero p x = refl
squish-skip fzero (fsuc j) p x = absurd (fzero≠fsuc p)
squish-skip (fsuc i) fzero p x = refl
squish-skip (fsuc i) (fsuc j) p fzero = refl
squish-skip (fsuc i) (fsuc j) p (fsuc x) = ap fsuc (squish-skip i j (fsuc-inj p) x)
squish-skip-fsuc : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i ≡ fsuc j
→ ∀ x → squish j (skip i x) ≡ x
squish-skip-fsuc fzero fzero p x = refl
squish-skip-fsuc fzero (fsuc j) p x = absurd (fzero≠fsuc p)
squish-skip-fsuc (fsuc i) fzero p fzero = refl
squish-skip-fsuc (fsuc fzero) fzero p (fsuc x) = refl
squish-skip-fsuc (fsuc (fsuc i)) fzero p (fsuc x) =
absurd (fzero≠fsuc (fsuc-inj (sym p)))
squish-skip-fsuc (fsuc i) (fsuc j) p fzero = refl
squish-skip-fsuc (fsuc i) (fsuc j) p (fsuc x) =
ap fsuc (squish-skip-fsuc i j (fsuc-inj p) x)
Fin-peel : ∀ {l k} → Fin (suc l) ≃ Fin (suc k) → Fin l ≃ Fin k
Fin-peel {l} {k} sl≃sk = (Iso→Equiv (l→k , (iso k→l b→a→b a→b→a))) where
sk≃sl : Fin (suc k) ≃ Fin (suc l)
sk≃sl = sl≃sk e⁻¹
module sl≃sk = Equiv sl≃sk
module sk≃sl = Equiv sk≃sl
l→k : Fin l → Fin k
l→k x with inspect (sl≃sk.to (fsuc x))
... | fsuc y , _ = y
... | fzero , p with inspect (sl≃sk.to fzero)
... | fsuc y , _ = y
... | fzero , q = absurd (fzero≠fsuc (sl≃sk.injective₂ q p))
k→l : Fin k → Fin l
k→l x with inspect (sk≃sl.to (fsuc x))
... | fsuc x , _ = x
... | fzero , p with inspect (sk≃sl.to fzero)
... | fsuc y , _ = y
... | fzero , q = absurd (fzero≠fsuc (sk≃sl.injective₂ q p))
absurd-path : ∀ {ℓ} {A : Type ℓ} {y : A} .{x : ⊥} → absurd x ≡ y
absurd-path {x = ()}
a→b→a : ∀ a → k→l (l→k a) ≡ a
a→b→a a with inspect (sl≃sk.to (fsuc a))
a→b→a a | fsuc x , p' with inspect (sk≃sl.to (fsuc x))
a→b→a a | fsuc x , p' | fsuc y , q' = fsuc-inj (
sym q' ∙ ap (sk≃sl.to) (sym p') ∙ sl≃sk.η _)
a→b→a a | fsuc x , p' | fzero , q' = absurd contra where
r = sl≃sk.injective₂ p' (sl≃sk.ε (fsuc x))
contra = fzero≠fsuc (sym (r ∙ q'))
a→b→a a | fzero , p' with inspect (sl≃sk.to fzero)
a→b→a a | fzero , p' | fsuc x , q' with inspect (sk≃sl.to (fsuc x))
a→b→a a | fzero , p' | fsuc x , q' | fsuc y , r' = absurd do
fzero≠fsuc (sym (sym r' ∙ ap sk≃sl.to (sym q') ∙ sl≃sk.η fzero))
a→b→a a | fzero , p' | fsuc x , q' | fzero , r' with inspect (sk≃sl.to fzero)
a→b→a a | fzero , p' | fsuc x , q' | fzero , r' | fsuc z , s = fsuc-inj $
sym s ∙ ap sk≃sl.to (sym p') ∙ sl≃sk.η (fsuc a)
a→b→a a | fzero , p' | fsuc x , q' | fzero , r' | fzero , s = absurd-path
a→b→a a | fzero , p' | fzero , q' = absurd (fzero≠fsuc $
sl≃sk.injective₂ q' p')
b→a→b : ∀ b → l→k (k→l b) ≡ b
b→a→b b with inspect (sk≃sl.to (fsuc b))
b→a→b b | fsuc x , p' with inspect (sl≃sk.to (fsuc x))
b→a→b b | fsuc x , p' | fsuc y , q' = fsuc-inj $
sym q' ∙ ap (sl≃sk.to) (sym p') ∙ sk≃sl.η _
b→a→b b | fsuc x , p' | fzero , q' = absurd contra where
r = sk≃sl.injective₂ p' (sk≃sl.ε (fsuc x))
contra = fzero≠fsuc (sym (r ∙ q'))
b→a→b b | fzero , p' with inspect (sk≃sl.to fzero)
b→a→b b | fzero , p' | fsuc x , q' with inspect (sl≃sk.to (fsuc x))
b→a→b b | fzero , p' | fsuc x , q' | fsuc y , r' = absurd (fzero≠fsuc $
sym (sym r' ∙ ap (sl≃sk.to) (sym q') ∙ sk≃sl.η _))
b→a→b b | fzero , p' | fsuc x , q' | fzero , r' with inspect (sl≃sk.to fzero)
b→a→b a | fzero , p' | fsuc x , q' | fzero , r' | fsuc z , s = fsuc-inj $
sym s ∙ ap (sl≃sk.to) (sym p') ∙ sk≃sl.η (fsuc a)
b→a→b a | fzero , p' | fsuc x , q' | fzero , r' | fzero , s = absurd-path
b→a→b b | fzero , p' | fzero , q' = absurd (fzero≠fsuc $
sk≃sl.injective₂ q' p')
Fin-injective : ∀ {l k} → Fin l ≃ Fin k → l ≡ k
Fin-injective {zero} {zero} l≃k = refl
Fin-injective {zero} {suc k} l≃k with equiv→inverse (l≃k .snd) fzero
... | ()
Fin-injective {suc l} {zero} l≃k with l≃k .fst fzero
... | ()
Fin-injective {suc l} {suc k} sl≃sk = ap suc $ Fin-injective (Fin-peel sl≃sk)
to-from-ℕ< : ∀ {n} (x : ℕ< n) → to-ℕ< {n = n} (from-ℕ< x) ≡ x
to-from-ℕ< {n = suc n} x = Σ-prop-path! (to-from-ℕ {n = suc n} x) where
to-from-ℕ : ∀ {n} x → to-nat {n = n} (from-ℕ< x) ≡ x .fst
to-from-ℕ {n = suc n} (zero , p) = refl
to-from-ℕ {n = suc n} (suc x , Nat.s≤s p) = ap suc (to-from-ℕ {n = n} (x , p))
from-to-ℕ< : ∀ {n} (x : Fin n) → from-ℕ< (to-ℕ< x) ≡ x
from-to-ℕ< fzero = refl
from-to-ℕ< (fsuc x) = ap fsuc (from-to-ℕ< x)
Fin≃ℕ< : ∀ {n} → Fin n ≃ ℕ< n
Fin≃ℕ< {n} = to-ℕ< , is-iso→is-equiv (iso from-ℕ< (to-from-ℕ< {n}) from-to-ℕ<)
avoid-injective
: ∀ {n} (i : Fin (suc n)) {j k : Fin (suc n)} {i≠j : i ≠ j} {i≠k : i ≠ k}
→ avoid i j i≠j ≡ avoid i k i≠k → j ≡ k
avoid-injective fzero {fzero} {k} {i≠j} p = absurd (i≠j refl)
avoid-injective fzero {fsuc j} {fzero} {i≠k = i≠k} p = absurd (i≠k refl)
avoid-injective {suc n} fzero {fsuc j} {fsuc k} p = ap fsuc p
avoid-injective {suc n} (fsuc i) {fzero} {fzero} p = refl
avoid-injective {suc n} (fsuc i) {fzero} {fsuc k} p = absurd (fzero≠fsuc p)
avoid-injective {suc n} (fsuc i) {fsuc j} {fzero} p = absurd (fzero≠fsuc (sym p))
avoid-injective {suc n} (fsuc i) {fsuc j} {fsuc k} p =
ap fsuc (avoid-injective {n} i {j} {k} (fsuc-inj p))Iterated products and sums🔗
We can break down and over finite sets as iterated products and sums, respectively.
Fin-suc-Π
: ∀ {ℓ} {n} {A : Fin (suc n) → Type ℓ}
→ (∀ x → A x) ≃ (A fzero × (∀ x → A (fsuc x)))
Fin-suc-Π = Iso→Equiv λ where
.fst f → f fzero , (λ x → f (fsuc x))
.snd .is-iso.inv (z , s) → fin-cons z s
.snd .is-iso.rinv x → refl
.snd .is-iso.linv k i fzero → k fzero
.snd .is-iso.linv k i (fsuc n) → k (fsuc n)
Fin-suc-Σ
: ∀ {ℓ} {n} {A : Fin (suc n) → Type ℓ}
→ Σ (Fin (suc n)) A ≃ (A fzero ⊎ Σ (Fin n) (A ∘ fsuc))
Fin-suc-Σ = Iso→Equiv λ where
.fst (fzero , a) → inl a
.fst (fsuc x , a) → inr (x , a)
.snd .is-iso.inv (inl a) → fzero , a
.snd .is-iso.inv (inr (x , a)) → fsuc x , a
.snd .is-iso.rinv (inl _) → refl
.snd .is-iso.rinv (inr _) → refl
.snd .is-iso.linv (fzero , a) → refl
.snd .is-iso.linv (fsuc x , a) → reflFinite choice🔗
An important fact about the (standard) finite sets in
constructive mathematics is that they always support choice,
which we phrase below as a “search” operator: if
is any Monoidal functor on types,
then it commutes with products. Since
over
are
iterated
products, we have that
commutes with
Fin-Monoidal
: ∀ {ℓ} n {A : Fin n → Type ℓ} {M}
(let module M = Effect M)
→ ⦃ Monoidal M ⦄
→ (∀ x → M.₀ (A x)) → M.₀ (∀ x → A x)
Fin-Monoidal zero _ = invmap (λ _ ()) _ munit
Fin-Monoidal (suc n) k =
Fin-suc-Π e⁻¹ <≃> (k 0 <,> Fin-Monoidal n (k ∘ fsuc))In particular, instantiating
with the propositional
truncation (which is an Idiom
and hence Monoidal), we get a
version of the axiom
of choice for finite sets.
finite-choice
: ∀ {ℓ} n {A : Fin n → Type ℓ}
→ (∀ x → ∥ A x ∥) → ∥ (∀ x → A x) ∥
finite-choice n = Fin-Monoidal nAn immediate consequence is that surjections into a finite set (thus, between finite sets) merely split:
finite-surjection-split
: ∀ {ℓ} {n} {B : Type ℓ}
→ (f : B → Fin n) → is-surjective f
→ ∥ (∀ x → fibre f x) ∥
finite-surjection-split f = finite-choice _Dually, we have that any Alternative functor
commutes with
on finite sets, since those are iterated sums.
Fin-Alternative
: ∀ {ℓ} n {A : Fin n → Type ℓ} {M}
(let module M = Effect M)
→ ⦃ Alternative M ⦄
→ (∀ x → M.₀ (A x)) → M.₀ (Σ (Fin n) A)
Fin-Alternative zero _ = invmap (λ ()) (λ ()) empty
Fin-Alternative (suc n) k =
Fin-suc-Σ e⁻¹ <≃> (k 0 <+> Fin-Alternative n (k ∘ fsuc))As a consequence, instantiating
with Dec, we get that finite sets
are exhaustible and omniscient, which
means that any family of decidable types indexed by a finite sets yields
decidable
and
respectively.
instance
Dec-Fin-∀
: ∀ {n ℓ} {A : Fin n → Type ℓ}
→ ⦃ ∀ {x} → Dec (A x) ⦄ → Dec (∀ x → A x)
Dec-Fin-∀ {n} ⦃ d ⦄ = Fin-Monoidal n (λ _ → d)
Dec-Fin-Σ
: ∀ {n ℓ} {A : Fin n → Type ℓ}
→ ⦃ ∀ {x} → Dec (A x) ⦄ → Dec (Σ (Fin n) A)
Dec-Fin-Σ {n} ⦃ d ⦄ = Fin-Alternative n λ _ → dFin-omniscience
: ∀ {n ℓ} (P : Fin n → Type ℓ) ⦃ _ : ∀ {x} → Dec (P x) ⦄
→ (Σ[ j ∈ Fin n ] P j × ∀ k → P k → j ≤ k) ⊎ (∀ x → ¬ P x)
Fin-omniscience {zero} P = inr λ ()
Fin-omniscience {suc n} P with holds? (P 0)
... | yes here = inl (0 , here , λ _ _ → 0≤x)
... | no ¬here with Fin-omniscience (P ∘ fsuc)
... | inl (ix , pix , least) = inl (fsuc ix , pix , fin-cons (λ here → absurd (¬here here)) λ i pi → Nat.s≤s (least i pi))
... | inr nowhere = inr (fin-cons ¬here nowhere)Injections and surjections🔗
The standard finite sets are Dedekind-finite, which means that every injection is a bijection. We prove this by a straightforward but annoying induction on
Fin-injection→equiv
: ∀ {n} (f : Fin n → Fin n)
→ injective f → is-equiv f
Fin-injection→equiv {zero} f inj .is-eqv ()
Fin-injection→equiv {suc n} f inj .is-eqv i with f 0 ≡? i
... | yes p = contr (0 , p) λ (j , p') → Σ-prop-path! (inj (p ∙ sym p'))
... | no ¬p = contr
(fsuc (rec .centre .fst) , avoid-injective (f 0) (rec .centre .snd))
λ where
(fzero , p) → absurd (¬p p)
(fsuc j , p) → Σ-prop-path! (ap (fsuc ∘ fst)
(rec .paths (j , ap₂ (avoid (f 0)) p prop!)))
where
rec = Fin-injection→equiv {n}
(λ x → avoid (f 0) (f (fsuc x)) (fzero≠fsuc ∘ inj))
(λ p → fsuc-inj (inj (avoid-injective (f 0) p)))
.is-eqv (avoid (f 0) i ¬p)Since every surjection between finite sets splits, any surjection has an injective right inverse, which is thus a bijection; by general properties of equivalences, this implies that is also a bijection.
Fin-surjection→equiv
: ∀ {n} (f : Fin n → Fin n)
→ is-surjective f → is-equiv f
Fin-surjection→equiv f surj = case finite-surjection-split f surj of λ split →
left-inverse→equiv (snd ∘ split)
(Fin-injection→equiv (fst ∘ split)
(right-inverse→injective f (snd ∘ split)))Vector operations🔗
avoid-insert
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ (j : Fin (suc n))
→ (i≠j : i ≠ j)
→ (ρ [ i ≔ a ]) j ≡ ρ (avoid i j i≠j)
avoid-insert {n = n} ρ fzero a fzero i≠j = absurd (i≠j refl)
avoid-insert {n = suc n} ρ fzero a (fsuc j) i≠j = refl
avoid-insert {n = suc n} ρ (fsuc i) a fzero i≠j = refl
avoid-insert {n = suc n} ρ (fsuc i) a (fsuc j) i≠j =
avoid-insert (ρ ∘ fsuc) i a j (i≠j ∘ ap fsuc)
insert-lookup
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ (ρ [ i ≔ a ]) i ≡ a
insert-lookup {n = n} ρ fzero a = refl
insert-lookup {n = suc n} ρ (fsuc i) a = insert-lookup (ρ ∘ fsuc) i a
delete-insert
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin n → A)
→ (i : Fin (suc n)) (a : A)
→ ∀ j → delete (ρ [ i ≔ a ]) i j ≡ ρ j
delete-insert ρ fzero a j = refl
delete-insert ρ (fsuc i) a fzero = refl
delete-insert ρ (fsuc i) a (fsuc j) = delete-insert (ρ ∘ fsuc) i a j
insert-delete
: ∀ {n} {ℓ} {A : Type ℓ}
→ (ρ : Fin (suc n) → A)
→ (i : Fin (suc n)) (a : A)
→ ρ i ≡ a
→ ∀ j → ((delete ρ i) [ i ≔ a ]) j ≡ ρ j
insert-delete {n = n} ρ fzero a p fzero = sym p
insert-delete {n = n} ρ fzero a p (fsuc j) = refl
insert-delete {n = suc n} ρ (fsuc i) a p fzero = refl
insert-delete {n = suc n} ρ (fsuc i) a p (fsuc j) = insert-delete (ρ ∘ fsuc) i a p j