module Order.Semilattice.Meet whereMeet semilatticesπ
A meet semilattice is a partially ordered set which has all finite meets. This means, in particular, that it has a top element, since that is the meet of the empty family. Note that, even though meet-semilattices are presented as being equipped with a binary operation this is not actual structure on the partially-ordered set: meets are uniquely determined, so βbeing a meet-semilatticeβ is always a proposition.
record is-meet-semilattice {o β} (P : Poset o β) : Type (o β β) where
  field
    _β©_     : β P β β β P β β β P β
    β©-meets : β x y β is-meet P x y (x β© y)
    has-top : Top P
  infixr 25 _β©_A homomorphism of meet-semilattices is a monotone function that sends finite meets to finite meets. In particular, it suffices to have and
since the converse direction of these inequalities is guaranteed by the universal properties.
record
  is-meet-slat-hom
    {P : Poset o β} {Q : Poset o' β'} (f : Monotone P Q)
    (P-slat : is-meet-semilattice P) (Q-slat : is-meet-semilattice Q)
    : Type (o β β')
  where  field
    β©-β€   : β x y β (f # x) Qβ.β© (f # y) Q.β€ f # (x Pβ.β© y)
    top-β€ : Qβ.top Q.β€ f # Pβ.topThe category of meet-semilatticesπ
id-meet-slat-hom
  : β (Pβ : is-meet-semilattice P)
  β is-meet-slat-hom idβ Pβ Pβ
id-meet-slat-hom {P = P} _ .β©-β€ _ _ = Poset.β€-refl P
id-meet-slat-hom {P = P} _ .top-β€ = Poset.β€-refl P
β-meet-slat-hom
  : β {Pβ Qβ Rβ} {f : Monotone Q R} {g : Monotone P Q}
  β is-meet-slat-hom f Qβ Rβ
  β is-meet-slat-hom g Pβ Qβ
  β is-meet-slat-hom (f ββ g) Pβ Rβ
β-meet-slat-hom {R = R} {f = f} {g = g} f-pres g-pres .β©-β€ x y =
  R .Poset.β€-trans (f-pres .β©-β€ (g # x) (g # y)) (f .pres-β€ (g-pres .β©-β€ x y))
β-meet-slat-hom {R = R} {f = f} {g = g} f-pres g-pres .top-β€ =
  R .Poset.β€-trans (f-pres .top-β€) (f .pres-β€ (g-pres .top-β€))Meet-slats-subcat : β o β β Subcat (Posets o β) (o β β) (o β β)
Meet-slats-subcat o β .Subcat.is-ob = is-meet-semilattice
Meet-slats-subcat o β .Subcat.is-hom = is-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-prop _ _ _ = hlevel 1
Meet-slats-subcat o β .Subcat.is-hom-id = id-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-β = β-meet-slat-hom
Meet-slats : β o β β Precategory (lsuc o β lsuc β) (o β β)
Meet-slats o β = Subcategory (Meet-slats-subcat o β)module Meet-slats {o} {β} = Cat.Reasoning (Meet-slats o β)
Meet-semilattice : β o β β Type _
Meet-semilattice o β = Meet-slats.Ob {o} {β}