module Order.Diagram.Meet where
Meetsđ
As mentioned before, in the binary case, we refer to glbs as meets: The meet of and is, if it exists, the greatest element satisfying and
record is-meet (P : Poset o â) (a b glb : â P â) : Type (o â â) where
no-eta-equality
open Poset P
field
: glb †a
meetâ€l : glb †b
meetâ€r : (lb' : Ob) â lb' †a â lb' †b â lb' †glb
greatest
record Meet (P : Poset o â) (a b : â P â) : Type (o â â) where
no-eta-equality
field
: â P â
glb : is-meet P a b glb
has-meet open is-meet has-meet public
open is-meet
: Poset o â â Type (o â â)
Has-meets = â x y â Meet P x y Has-meets P
A shuffling of terms shows that being a meet is precisely being the greatest lower bound of a family of two elements.
: â {a b glb} â is-meet P a b glb â is-glb P (if_then a else b) glb
is-meetâis-glb .glbâ€fam true = meet .meetâ€l
is-meetâis-glb meet .glbâ€fam false = meet .meetâ€r
is-meetâis-glb meet .greatest glb' x = meet .greatest glb' (x true) (x false)
is-meetâis-glb meet
: â {F : Bool â Ob} {glb} â is-glb P F glb â is-meet P (F true) (F false) glb
is-glbâis-meet .meetâ€l = glb .glbâ€fam true
is-glbâis-meet glb .meetâ€r = glb .glbâ€fam false
is-glbâis-meet glb .greatest lb' lb'<a lb'<b = glb .greatest lb' λ where
is-glbâis-meet glb â lb'<a
true â lb'<b false
An important lemma about meets is that, if then the greatest lower bound of and is just
: â {a b} â a †b â is-meet P a b a
leâis-meet .meetâ€l = â€-refl
leâis-meet aâ€b .meetâ€r = aâ€b
leâis-meet aâ€b .greatest lb' lb'â€a _ = lb'â€a
leâis-meet aâ€b
: â {a b l} â a †b â is-meet P a b l â a ⥠l
le-meet = meet-unique (leâis-meet aâ€b) l le-meet aâ€b l
As productsđ
When passing from posets to categories, meets become products: coming from the other direction, if a category has each a proposition, then products in are simply meets.
open is-product
open Product
: â {a b glb : Ob} â is-meet P a b glb â Product (posetâcategory P) a b
is-meetâproduct .apex = _
is-meetâproduct glb .Ïâ = glb .is-meet.meetâ€l
is-meetâproduct glb .Ïâ = glb .is-meet.meetâ€r
is-meetâproduct glb .has-is-product .âš_,_â© q<a q<b =
is-meetâproduct glb .is-meet.greatest _ q<a q<b
glb .has-is-product .Ïââfactor = prop!
is-meetâproduct glb .has-is-product .Ïââfactor = prop!
is-meetâproduct glb .has-is-product .unique _ _ _ = prop! is-meetâproduct glb