module Cat.Monoidal.Strength.Monad where
Strong monads🔗
Recall that a (left) strength for an endofunctor on a monoidal category consists of a natural transformation allowing us to “slide” things from the ambient context into the functor. If is equipped with the structure of a monad, then it is natural to refine this notion to be compatible with the monad, yielding the notion of a (left/right-) strong monad.
record Left-monad-strength : Type (o ⊔ ℓ) where
field
: Left-strength Cᵐ M
functor-strength
open Left-strength functor-strength public
field
: ∀ {A B} → σ ∘ (id ⊗₁ η B) ≡ η (A ⊗ B)
left-strength-η : ∀ {A B} → σ ∘ (id ⊗₁ μ B) ≡ μ (A ⊗ B) ∘ M₁ σ ∘ σ
left-strength-μ
record Right-monad-strength : Type (o ⊔ ℓ) where
field
: Right-strength Cᵐ M
functor-strength
open Right-strength functor-strength public
field
: ∀ {A B} → τ ∘ (η A ⊗₁ id) ≡ η (A ⊗ B)
right-strength-η : ∀ {A B} → τ ∘ (μ A ⊗₁ id) ≡ μ (A ⊗ B) ∘ M₁ τ ∘ τ
right-strength-μ
record Monad-strength : Type (o ⊔ ℓ) where
field
: Left-monad-strength
strength-left : Right-monad-strength
strength-right
open Left-monad-strength strength-left hiding (functor-strength) public
open Right-monad-strength strength-right hiding (functor-strength) public
field
: ∀ {A B C}
strength-α→ → M₁ (α→ A B C) ∘ τ ∘ (σ ⊗₁ id) ≡ σ ∘ (id ⊗₁ τ) ∘ α→ A (M₀ B) C
Strong monads are of particular importance in the semantics of
effectful programming languages: while monads are used to model effects,
they do not capture the fact that monadic computations can make use of
information from the context; for example, consider the
following pseudo-Haskell program (in do
notation, then in
two possible desugared forms):
do
M A
a ← ma ∷ M B
b ← mb ∷ pure (a , b)
>>= λ a →
ma >>= λ b →
mb pure (a , b)
fmap (λ a →
join (fmap (λ b →
(a , b)) mb) ma)
Notice that mb
, and then a
, are available
under
abstractions:
this is no problem in a functional programming language like Haskell,
because monads are automatically enriched in the sense that the
functorial action fmap
is an internal morphism; in
other words, -monads
are strong. But the mathematical denotation of the above program in
a general monoidal category makes crucial use of the strengths, as we
will see below.
With this perspective in mind, the additional coherences imposed on a monad strength are quite natural: using the strength to slide into a “pure” computation (that is, one in the image of the unit) should yield a pure computation, and using the strength twice before multiplying should be the same as using it once after multiplying: they express a sort of “internal naturality” condition for the unit and multiplication with respect to the enrichment induced by the strength.
Monoidal functors from strong monads🔗
The above program wasn’t picked at random – it witnesses the common functional programming wisdom that “every monad is an applicative functor1”, whose theoretical underpinning is that, given a strong monad we can equip with the structure of a lax monoidal functor.
In fact, we can do so in two different ways, corresponding to sequencing the effects from left to right or from right to left:
: -⊗- F∘ (M F× M) => M F∘ -⊗-
left-φ right-φ
= (mult ◂ -⊗-) ∘nt nat-assoc-to (M ▸ left-strength) ∘nt right-strength'
left-φ where
unquoteDecl right-strength' =
(-⊗- F∘ (M F× M) => M F∘ -⊗- F∘ (Id F× M))
cohere-into right-strength' (right-strength ◂ (Id F× M))
= (mult ◂ -⊗-) ∘nt nat-assoc-to (M ▸ right-strength) ∘nt left-strength'
right-φ where
unquoteDecl left-strength' =
(-⊗- F∘ (M F× M) => M F∘ -⊗- F∘ (M F× Id))
cohere-into left-strength' (left-strength ◂ (M F× Id))
If the two ways are the same (thus if the above diagram commutes), we say that the monad (or the strength) is commutative.
: Type (o ⊔ ℓ)
is-commutative-strength = right-φ ≡ left-φ is-commutative-strength
We now complete the definition of the left-to-right monoidal
structure, which requires a bit of work. For the unit, we pick
the unit of the monad.
: Lax-monoidal-functor-on Cᵐ Cᵐ M
strength→monoidal .ε = η Unit
strength→monoidal .F-mult = left-φ strength→monoidal
: Lax-monoidal-functor-on Cᵐ Cᵐ M
strength→monoidal .ε = η Unit
strength→monoidal .F-mult = left-φ strength→monoidal
The associator coherence is witnessed by the following
monstrosity commutative diagram.
.F-α→ =
strength→monoidal (α→ _ _ _) ∘ (μ _ ∘ M₁ σ ∘ τ) ∘ ((μ _ ∘ M₁ σ ∘ τ) ⊗₁ id) ≡⟨ pulll (extendl (sym (mult.is-natural _ _ _))) ⟩
M₁ (μ _ ∘ M₁ (M₁ (α→ _ _ _)) ∘ M₁ σ ∘ τ) ∘ ((μ _ ∘ M₁ σ ∘ τ) ⊗₁ id) ≡⟨ pullr (pullr (pullr refl)) ⟩
_ ∘ M₁ (M₁ (α→ _ _ _)) ∘ M₁ σ ∘ τ ∘ ((μ _ ∘ M₁ σ ∘ τ) ⊗₁ id) ≡⟨ refl⟩∘⟨ M.pulll left-strength-α→ ⟩
μ _ ∘ M₁ (σ ∘ (id ⊗₁ σ) ∘ α→ _ _ _) ∘ τ ∘ ((μ _ ∘ M₁ σ ∘ τ) ⊗₁ id) ≡⟨ refl⟩∘⟨ refl⟩∘⟨ ◀.popl right-strength-μ ⟩
μ _ ∘ M₁ (σ ∘ (id ⊗₁ σ) ∘ α→ _ _ _) ∘ (μ _ ∘ M₁ τ ∘ τ) ∘ ((M₁ σ ∘ τ) ⊗₁ id) ≡⟨ refl⟩∘⟨ refl⟩∘⟨ pullr (pullr (◀.popl (τ.is-natural _ _ _))) ⟩
μ _ ∘ M₁ (σ ∘ (id ⊗₁ σ) ∘ α→ _ _ _) ∘ μ _ ∘ M₁ τ ∘ (M₁ (σ ⊗₁ id) ∘ τ) ∘ (τ ⊗₁ id) ≡⟨ refl⟩∘⟨ M.popr (M.popr (pulll (sym (mult.is-natural _ _ _)))) ⟩
μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ σ) ∘ (μ _ ∘ M₁ (M₁ (α→ _ _ _))) ∘ M₁ τ ∘ (M₁ (σ ⊗₁ id) ∘ τ) ∘ (τ ⊗₁ id) ≡⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullr (refl⟩∘⟨ refl⟩∘⟨ pullr refl) ⟩
μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ σ) ∘ μ _ ∘ M₁ (M₁ (α→ _ _ _)) ∘ M₁ τ ∘ M₁ (σ ⊗₁ id) ∘ τ ∘ (τ ⊗₁ id) ≡⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ M.pulll3 strength-α→ ⟩
μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ σ) ∘ μ _ ∘ M₁ (σ ∘ (id ⊗₁ τ) ∘ α→ _ _ _) ∘ τ ∘ (τ ⊗₁ id) ≡⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ M.popr (M.popr (sym right-strength-α→)) ⟩
μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ σ) ∘ μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ τ) ∘ τ ∘ α→ _ _ _ ≡˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendl (τ.is-natural _ _ _) ⟩
μ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ σ) ∘ μ _ ∘ M₁ σ ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡˘⟨ refl⟩∘⟨ refl⟩∘⟨ extendl (mult.is-natural _ _ _) ⟩
μ _ ∘ M₁ σ ∘ μ _ ∘ M₁ (M₁ (id ⊗₁ σ)) ∘ M₁ σ ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡˘⟨ refl⟩∘⟨ extendl (mult.is-natural _ _ _) ⟩
μ _ ∘ μ _ ∘ M₁ (M₁ σ) ∘ M₁ (M₁ (id ⊗₁ σ)) ∘ M₁ σ ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡˘⟨ extendl mult-assoc ⟩
μ _ ∘ M₁ (μ _) ∘ M₁ (M₁ σ) ∘ M₁ (M₁ (id ⊗₁ σ)) ∘ M₁ σ ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ M.extendl (σ.is-natural _ _ _) ⟩
μ _ ∘ M₁ (μ _) ∘ M₁ (M₁ σ) ∘ M₁ σ ∘ M₁ (id ⊗₁ M₁ σ) ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡⟨ refl⟩∘⟨ M.pulll3 (sym left-strength-μ) ⟩
μ _ ∘ M₁ (σ ∘ (id ⊗₁ μ _)) ∘ M₁ (id ⊗₁ M₁ σ) ∘ τ ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡˘⟨ refl⟩∘⟨ refl⟩∘⟨ extendl (τ.is-natural _ _ _) ⟩
μ _ ∘ M₁ (σ ∘ (id ⊗₁ μ _)) ∘ τ ∘ (M₁ id ⊗₁ M₁ σ) ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡⟨ refl⟩∘⟨ M.popr (extendl (sym (τ.is-natural _ _ _))) ⟩
μ _ ∘ M₁ σ ∘ τ ∘ (M₁ id ⊗₁ μ _) ∘ (M₁ id ⊗₁ M₁ σ) ∘ (M₁ id ⊗₁ τ) ∘ α→ _ _ _ ≡⟨ pushr (pushr (refl⟩∘⟨ ⊗.pulll3 ((refl⟩∘⟨ M.annihilate (idl _)) ∙ M.eliml refl ,ₚ refl))) ⟩
μ (μ _ ∘ M₁ σ ∘ τ) ∘ (id ⊗₁ (μ _ ∘ M₁ σ ∘ τ)) ∘ α→ _ _ _ ∎
The unitor coherences are relatively easy to prove.
.F-λ← =
strength→monoidal (μ _ ∘ M₁ σ ∘ τ) ∘ (η _ ⊗₁ id) ≡⟨ refl⟩∘⟨ pullr (pullr right-strength-η) ⟩
M₁ λ← ∘ _ ∘ M₁ σ ∘ η _ ≡˘⟨ refl⟩∘⟨ refl⟩∘⟨ unit.is-natural _ _ _ ⟩
M₁ λ← ∘ μ _ ∘ η _ ∘ σ ≡⟨ refl⟩∘⟨ cancell right-ident ⟩
M₁ λ← ∘ μ
M₁ λ← ∘ σ ≡⟨ left-strength-λ← ⟩
λ← ∎.F-ρ← =
strength→monoidal (μ _ ∘ M₁ σ ∘ τ) ∘ (⌜ id ⌝ ⊗₁ η _) ≡˘⟨ ap¡ M-id ⟩
M₁ ρ← ∘ (μ _ ∘ M₁ σ ∘ τ) ∘ (M₁ id ⊗₁ η _) ≡⟨ refl⟩∘⟨ pullr (pullr (τ.is-natural _ _ _)) ⟩
M₁ ρ← ∘ _ ∘ M₁ σ ∘ M₁ (id ⊗₁ η _) ∘ τ ≡⟨ refl⟩∘⟨ refl⟩∘⟨ M.pulll left-strength-η ⟩
M₁ ρ← ∘ μ _ ∘ M₁ (η _) ∘ τ ≡⟨ refl⟩∘⟨ cancell left-ident ⟩
M₁ ρ← ∘ μ
M₁ ρ← ∘ τ ≡⟨ right-strength-ρ← ⟩ ρ← ∎
Symmetry🔗
In a braided monoidal category, we unsurprisingly say that a monad strength is symmetric if the underlying functor strength is: a strength with this property is equivalent to the data of a left (or right) strength, with the other one obtained by the braiding.
module _ (Cᵇ : Braided-monoidal Cᵐ) where
: Monad-strength Cᵐ monad → Type (o ⊔ ℓ)
is-symmetric-monad-strength =
is-symmetric-monad-strength s
is-symmetric-strength Cᵐ M Cᵇ functor-strengthwhere open Monad-strength s
Duality🔗
Just as with functor strengths, the definitions of left and right monad strengths are completely dual up to reversing the tensor product.
monad-strength^rev: Left-monad-strength (Cᵐ ^rev) monad ≃ Right-monad-strength Cᵐ monad
= Iso→Equiv is where
monad-strength^rev : Iso _ _
is .fst l = record
is { functor-strength = strength^rev Cᵐ M .fst functor-strength
; right-strength-η = left-strength-η
; right-strength-μ = left-strength-μ
} where open Left-monad-strength l
.snd .inv r = record
is { functor-strength = Equiv.from (strength^rev Cᵐ M) functor-strength
; left-strength-η = right-strength-η
; left-strength-μ = right-strength-μ
} where open Right-monad-strength r
.snd .rinv _ = Right-monad-strength-path Cᵐ monad
is (Equiv.ε (strength^rev Cᵐ M) _)
.snd .linv _ = Left-monad-strength-path (Cᵐ ^rev) monad
is (Equiv.η (strength^rev Cᵐ M) _)
Sets-monads are strong🔗
The fact that -endofunctors are strong straightforwardly extends to the fact that monads are strong, by naturality of the unit and multiplication.
: Left-monad-strength Setsₓ monad
Sets-monad-strength .functor-strength = Sets-strength M
Sets-monad-strength .left-strength-η = ext λ a b →
Sets-monad-strength (unit.is-natural _ _ (a ,_) $ₚ _)
sym .left-strength-μ = ext λ a mmb →
Sets-monad-strength (mult.is-natural _ _ (a ,_) $ₚ _) ∙ ap (μ _) (M-∘ _ _ $ₚ _) sym
Applicative functors, or idioms, are usually defined as lax monoidal functors equipped with a compatible strength (not to be confused with strong monoidal functors).↩︎