module Algebra.Group.Ab.Hom whereMaps between abelian groupsπ
As groups are an algebraic theory, if is a group, we can equip the set of functions with the pointwise group structure. When considering a pair of groups , however, weβre less interested in the functions , and more interested in the homomorphisms . Can these be equipped with a group structure?
It turns out that the answer is no: if you try to make into a functor on , equipping the pointwise group structure, you find out that the sum of group homomorphisms can not be shown to be a homomorphism. But when considering abelian groups, i.e.Β the category , this does work:
  make-ab-on-hom .mul f g .hom x = f # x B.* g # x
  make-ab-on-hom .mul f g .preserves .pres-β x y =
    f # (x A.* y) B.* g # (x A.* y)          β‘β¨ apβ B._*_ (f .preserves .pres-β x y) (g .preserves .pres-β x y) β©
    (f # x B.* f # y) B.* (g # x B.* g # y)  β‘β¨ B.pullr (B.pulll refl)  β©
    f # x B.* (f # y B.* g # x) B.* g # y    β‘β¨ (Ξ» i β f # x B.* B.commutes {x = f # y} {y = g # x} i B.* (g # y)) β©
    f # x B.* (g # x B.* f # y) B.* g # y    β‘β¨ B.pushr (B.pushl refl) β©
    (f # x B.* g # x) B.* (f # y B.* g # y)  β
  make-ab-on-hom .inv f .hom x = B._β»ΒΉ (f # x)
  make-ab-on-hom .inv f .preserves .pres-β x y =
    f # (x A.* y) B.β»ΒΉ            β‘β¨ ap B._β»ΒΉ (f .preserves .pres-β x y) β©
    (f # x B.* f # y) B.β»ΒΉ        β‘β¨ B.inv-comm β©
    (f # y B.β»ΒΉ) B.* (f # x B.β»ΒΉ) β‘β¨ B.commutes β©
    (f # x B.β»ΒΉ) B.* (f # y B.β»ΒΉ) β
  make-ab-on-hom .1g .hom x = B.1g
  make-ab-on-hom .1g .preserves .pres-β x y = B.introl reflItβs only a little more work to show that this extends to a functor .
Ab-hom-functor : β {β} β Functor (Ab β ^op ΓαΆ Ab β) (Ab β)
Ab-hom-functor .Fβ (A , B) = Ab[ A , B ]
Ab-hom-functor .Fβ (f , g) .hom h = g Ab.β h Ab.β f
Ab-hom-functor .Fβ (f , g) .preserves .pres-β x y = ext Ξ» z β
  g .preserves .pres-β _ _
Ab-hom-functor .F-id    = trivial!
Ab-hom-functor .F-β f g = trivial!