module Algebra.Group.Cat.Base whereThe category of groupsπ
The category of groups, as the name implies, has its objects the
Groups, with the
morphisms between them the group homomorphisms.
open Group-on
open is-group-hom
Group-structure : β β β Thin-structure β Group-on
Group-structure β .is-hom f G G' = el! (is-group-hom G G' f)
Group-structure β .id-is-hom        .pres-β x y = refl
Group-structure β .β-is-hom f g Ξ± Ξ² .pres-β x y =
  ap f (Ξ² .pres-β x y) β Ξ± .pres-β _ _
Group-structure β .id-hom-unique {s = s} {t = t} Ξ± Ξ² i =
  record
    { _β_          = Ξ» x y β Ξ± .pres-β x y i
    ; has-is-group =
      is-propβpathp (Ξ» i β is-group-is-prop {_*_ = Ξ» x y β Ξ± .pres-β x y i})
        (s .has-is-group)
        (t .has-is-group)
        i
    }
Groups : β β β Precategory (lsuc β) β
Groups β = Structured-objects (Group-structure β)
Groups-is-category : β {β} β is-category (Groups β)
Groups-is-category = Structured-objects-is-category (Group-structure _)
instance
  Groups-equational : β {β} β is-equational (Group-structure β)
  Groups-equational .is-equational.invert-id-hom x .pres-β a b = sym (x .pres-β a b)
module Groups {β} = Cat (Groups β)
Group : β β β Type (lsuc β)
Group _ = Groups.Ob
to-group : β {β} {A : Type β} β make-group A β Group β
to-group {A = A} mg = el A (mg .make-group.group-is-set) , (to-group-on mg)The underlying setπ
The category of groups admits a faithful functor into the category of
sets, written
,
which projects out the underlying set of the group. Faithfulness of this
functor says, in more specific words, that equality of group
homomorphisms can be tested by comparing the underlying morphisms of
sets.
Forget : Functor (Groups β) (Sets β)
Forget = Forget-structure (Group-structure _)
Forget-is-faithful : is-faithful (Forget {β})
Forget-is-faithful = Structured-hom-path (Group-structure _)