module Order.Instances.Nat whereThe usual ordering on natural numbers🔗
private module P = Poset
open is-meet
open is-join
open Bottom
open Meet
open JoinThis module deals with noting down facts about the usual ordering on
the set of natural numbers; most of the proofs are in the modules Data.Nat.Properties and
Data.Nat.Order.
We have already shown that the usual ordering (or “numeric”) ordering on the natural numbers is a poset:
Nat-poset : Poset lzero lzero
Nat-poset .P.Ob = Nat
Nat-poset .P._≤_ = _≤_
Nat-poset .P.≤-thin = ≤-is-prop
Nat-poset .P.≤-refl = ≤-refl
Nat-poset .P.≤-trans = ≤-trans
Nat-poset .P.≤-antisym = ≤-antisymWe’ve also defined procedures for computing the meets and joins of pairs of natural numbers:
Nat-min-is-meet : ∀ x y → is-meet Nat-poset x y (min x y)
Nat-min-is-meet x y .meet≤l = min-≤l x y
Nat-min-is-meet x y .meet≤r = min-≤r x y
Nat-min-is-meet x y .greatest = min-univ x y
Nat-max-is-join : ∀ x y → is-join Nat-poset x y (max x y)
Nat-max-is-join x y .l≤join = max-≤l x y
Nat-max-is-join x y .r≤join = max-≤r x y
Nat-max-is-join x y .least = max-univ x yNat-meets : ∀ x y → Meet Nat-poset x y
Nat-meets x y .glb = min x y
Nat-meets x y .has-meet = Nat-min-is-meet x y
Nat-joins : ∀ x y → Join Nat-poset x y
Nat-joins x y .lub = max x y
Nat-joins x y .has-join = Nat-max-is-join x yIt’s straightforward to show that this order is bounded below, since we have for any
Nat-bottom : Bottom Nat-poset
Nat-bottom .bot = 0
Nat-bottom .has-bottom x = 0≤xThis means that the ordering forms a join semilattice.
Nat-is-join-semilattice : is-join-semilattice Nat-poset
Nat-is-join-semilattice .is-join-semilattice._∪_ = max
Nat-is-join-semilattice .is-join-semilattice.∪-joins = Nat-max-is-join
Nat-is-join-semilattice .is-join-semilattice.has-bottom = Nat-bottomNat-is-upwards-directed : is-upwards-directed Nat-poset
Nat-is-upwards-directed = is-join-slat→is-upwards-directed Nat-is-join-semilatticeHowever, it’s not bounded above:
Nat-no-top : ¬ Top Nat-poset
Nat-no-top record { top = greatest ; has-top = is-greatest } =
let
rem₁ : suc greatest ≤ greatest
rem₁ = is-greatest (suc greatest)
in ¬sucx≤x _ rem₁This is also a decidable total order; we show totality by proving weak totality, since we already know that the ordering is decidable.
Nat-is-dec-total : is-decidable-total-order Nat-poset
Nat-is-dec-total = from-weakly-total (≤-is-weakly-total _ _)