module Order.Instances.Elements.Covariant wheremodule _ {o ℓ} {P : Poset o ℓ} where
open Poset PThe covariant poset of elements🔗
The covariant poset of elements of an upper set denoted is the poset whose elements are the a such that holds, where the order is given the ordering of
∫ : (F : Monotone P Props) → Poset o ℓ
∫ F .Poset.Ob = ∫ₚ F
∫ F .Poset._≤_ (x , _) (y , _) = x ≤ y
∫ F .Poset.≤-thin = hlevel 1
∫ F .Poset.≤-refl = ≤-refl
∫ F .Poset.≤-trans = ≤-trans
∫ F .Poset.≤-antisym x≤y y≤x = Σ-prop-path! (≤-antisym x≤y y≤x)As the name suggests, this is the order-theoretic analog of the covariant category of elements.