module Order.Diagram.Lub wheremodule _ {o ℓ} (P : Poset o ℓ) where
open Poset PLeast upper bounds🔗
A lub (short for least upper bound) for a family of elements is, as the name implies, a least elemnet among the upper boudns of the Being an upper bound means that we have for all Being the least upper bound means that if we’re given some other satisfying (for each then we have
The same observation about the naming of glbs vs meets applies to lubs, with the binary name being join.
record is-lub
{ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) (lub : Ob)
: Type (o ⊔ ℓ ⊔ ℓᵢ)
where
no-eta-equality
field
fam≤lub : ∀ i → F i ≤ lub
least : (ub' : Ob) → (∀ i → F i ≤ ub') → lub ≤ ub'
record Lub {ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) : Type (o ⊔ ℓ ⊔ ℓᵢ) where
no-eta-equality
field
lub : Ob
has-lub : is-lub F lub
open is-lub has-lub publicunquoteDecl H-Level-is-lub = declare-record-hlevel 1 H-Level-is-lub (quote is-lub)
module _ {o ℓ} {P : Poset o ℓ} where
open Order.Reasoning P
open is-lub
lub-unique
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x y}
→ is-lub P F x → is-lub P F y
→ x ≡ y
lub-unique {x = x} {y = y} lub lub' = ≤-antisym
(lub .least y (lub' .fam≤lub))
(lub' .least x (lub .fam≤lub))
Lub-is-prop
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob}
→ is-prop (Lub P F)
Lub-is-prop p q i .Lub.lub =
lub-unique (Lub.has-lub p) (Lub.has-lub q) i
Lub-is-prop {F = F} p q i .Lub.has-lub =
is-prop→pathp
(λ i → hlevel {T = is-lub _ _ (lub-unique (Lub.has-lub p) (Lub.has-lub q) i)} 1)
(Lub.has-lub p) (Lub.has-lub q) i
instance
H-Level-Lub
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {n}
→ H-Level (Lub P F) (suc n)
H-Level-Lub = prop-instance Lub-is-prop
lift-is-lub
: ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {lub}
→ is-lub P F lub → is-lub P (F ⊙ lower {ℓ = ℓᵢ'}) lub
lift-is-lub is .fam≤lub (lift ix) = is .fam≤lub ix
lift-is-lub is .least ub' le = is .least ub' (le ⊙ lift)
lift-lub
: ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob}
→ Lub P F → Lub P (F ⊙ lower {ℓ = ℓᵢ'})
lift-lub lub .Lub.lub = Lub.lub lub
lift-lub lub .Lub.has-lub = lift-is-lub (Lub.has-lub lub)
lower-is-lub
: ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {lub}
→ is-lub P (F ⊙ lower {ℓ = ℓᵢ'}) lub → is-lub P F lub
lower-is-lub is .fam≤lub ix = is .fam≤lub (lift ix)
lower-is-lub is .least ub' le = is .least ub' (le ⊙ lower)
lower-lub
: ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob}
→ Lub P (F ⊙ lower {ℓ = ℓᵢ'}) → Lub P F
lower-lub lub .Lub.lub = Lub.lub lub
lower-lub lub .Lub.has-lub = lower-is-lub (Lub.has-lub lub) module _
{ℓᵢ ℓᵢ'} {Ix : Type ℓᵢ} {Im : Type ℓᵢ'}
{f : Ix → Im}
{F : Im → Ob}
(surj : is-surjective f)
where
cover-preserves-is-lub : ∀ {lub} → is-lub P F lub → is-lub P (F ⊙ f) lub
cover-preserves-is-lub l .fam≤lub x = l .fam≤lub (f x)
cover-preserves-is-lub l .least ub' le = l .least ub' λ i → ∥-∥-out! do
(i' , p) ← surj i
pure (≤-trans (≤-refl' (ap F (sym p))) (le i'))
cover-preserves-lub : Lub P F → Lub P (F ⊙ f)
cover-preserves-lub l .Lub.lub = _
cover-preserves-lub l .Lub.has-lub = cover-preserves-is-lub (l .Lub.has-lub)
cover-reflects-is-lub : ∀ {lub} → is-lub P (F ⊙ f) lub → is-lub P F lub
cover-reflects-is-lub l .fam≤lub x = ∥-∥-out! do
(y , p) ← surj x
pure (≤-trans (≤-refl' (ap F (sym p))) (l .fam≤lub y))
cover-reflects-is-lub l .least ub' le = l .least ub' λ i → le (f i)
cover-reflects-lub : Lub P (F ⊙ f) → Lub P F
cover-reflects-lub l .Lub.lub = _
cover-reflects-lub l .Lub.has-lub = cover-reflects-is-lub (l .Lub.has-lub)
cast-is-lub
: ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {I' : Type ℓᵢ'} {F : I → Ob} {G : I' → Ob} {lub}
→ (e : I ≃ I')
→ (∀ i → F i ≡ G (Equiv.to e i))
→ is-lub P F lub
→ is-lub P G lub
cast-is-lub {G = G} e p has-lub .fam≤lub i' =
≤-trans
(≤-refl' (sym (p (Equiv.from e i') ∙ ap G (Equiv.ε e i'))))
(has-lub .fam≤lub (Equiv.from e i'))
cast-is-lub e p has-lub .least ub G≤ub =
has-lub .least ub (λ i → ≤-trans (≤-refl' (p i)) (G≤ub (Equiv.to e i)))
cast-is-lubᶠ
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F G : I → Ob} {lub}
→ (∀ i → F i ≡ G i)
→ is-lub P F lub
→ is-lub P G lub
cast-is-lubᶠ {lub = lub} p has-lub = cast-is-lub (_ , id-equiv) p has-lubLet be a family. If there is some such that for all then is the least upper bound of
fam-bound→is-lub
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob}
→ (i : I) → (∀ j → F j ≤ F i)
→ is-lub P F (F i)
fam-bound→is-lub i ge .fam≤lub = ge
fam-bound→is-lub i ge .least y le = le iIf is the least upper bound of a constant family, then must be equal to every member of the family.
lub-of-const-fam
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x}
→ (∀ i j → F i ≡ F j)
→ is-lub P F x
→ ∀ i → F i ≡ x
lub-of-const-fam {F = F} is-const x-lub i =
≤-antisym
(fam≤lub x-lub i)
(least x-lub (F i) λ j → ≤-refl' (sym (is-const i j)))Furthermore, if is a constant family and is merely inhabited, then has a least upper bound.
const-inhabited-fam→is-lub
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x}
→ (∀ i → F i ≡ x)
→ ∥ I ∥
→ is-lub P F x
const-inhabited-fam→is-lub {I = I} {F = F} {x = x} is-const =
rec! mk-is-lub where
mk-is-lub : I → is-lub P F x
mk-is-lub i .is-lub.fam≤lub j = ≤-refl' (is-const j)
mk-is-lub i .is-lub.least y le =
x =˘⟨ is-const i ⟩
F i ≤⟨ le i ⟩
y ≤∎
const-inhabited-fam→lub
: ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob}
→ (∀ i j → F i ≡ F j)
→ ∥ I ∥
→ Lub P F
const-inhabited-fam→lub {I = I} {F = F} is-const =
rec! mk-lub where
mk-lub : I → Lub P F
mk-lub i .Lub.lub = F i
mk-lub i .Lub.has-lub =
const-inhabited-fam→is-lub (λ j → is-const j i) (inc i)