module Data.Nat.Base whereopen import Prim.Data.Nat hiding (_<_) publicNatural numbers🔗
The natural numbers are the inductive type generated by zero and closed under taking successors. Thus, they satisfy the
following induction principle, which is familiar:
Nat-elim : ∀ {ℓ} (P : Nat → Type ℓ)
→ P 0
→ ({n : Nat} → P n → P (suc n))
→ (n : Nat) → P n
Nat-elim P pz ps zero = pz
Nat-elim P pz ps (suc n) = ps (Nat-elim P pz ps n)
iter : ∀ {ℓ} {A : Type ℓ} → Nat → (A → A) → A → A
iter zero f = id
iter (suc n) f = f ∘ iter n fTranslating from type theoretic notation to mathematical English, the
type of Nat-elim says that if a
predicate P holds of zero, and the truth of
P(suc n) follows from P(n), then
P is true for every natural number.
Discreteness🔗
An interesting property of the natural numbers, type-theoretically,
is that they are discrete: given
any pair of natural numbers, there is an algorithm that can tell you
whether or not they are equal. First, observe that we can distinguish zero from successor:
zero≠suc : {n : Nat} → ¬ zero ≡ suc n
zero≠suc path = subst distinguish path tt where
distinguish : Nat → Type
distinguish zero = ⊤
distinguish (suc x) = ⊥suc≠zero : {n : Nat} → ¬ suc n ≡ zero
suc≠zero = zero≠suc ∘ symThe idea behind this proof is that we can write a predicate which is
true for zero, and
false for any
successor. Since we know that ⊤ is
inhabited (by tt), we can transport
that along the claimed path to get an inhabitant of ⊥, i.e., a contradiction.
pred : Nat → Nat
pred 0 = 0
pred (suc n) = n
suc-inj : {x y : Nat} → suc x ≡ suc y → x ≡ y
suc-inj = ap predFurthermore, observe that the successor operation is injective, i.e.,
we can “cancel” it on paths. Putting these together, we get a proof that
equality for the natural numbers is decidable:
private module _ where private Discrete-Nat : Discrete Nat
Discrete-Nat .decide = go where
go : ∀ x y → Dec (x ≡ y)
go zero zero = yes refl
go zero (suc y) = no λ zero≡suc → absurd (zero≠suc zero≡suc)
go (suc x) zero = no λ suc≡zero → absurd (suc≠zero suc≡zero)
go (suc x) (suc y) with go x y
... | yes x≡y = yes (ap suc x≡y)
... | no ¬x≡y = no λ sucx≡sucy → ¬x≡y (suc-inj sucx≡sucy)abstract
from-prim-eq : ∀ {x y} → So (x == y) → x ≡ y
from-prim-eq {zero} {zero} p = refl
from-prim-eq {suc x} {suc y} p = ap suc (from-prim-eq p)
from-prim-eq-refl : ∀ {x p} → from-prim-eq {x} {x} p ≡ refl
from-prim-eq-refl {zero} = refl
from-prim-eq-refl {suc x} = ap (ap suc) (from-prim-eq-refl {x})
{-# REWRITE from-prim-eq-refl #-}
to-prim-eq : ∀ {x y} → x ≡ y → So (x == y)
to-prim-eq {zero} {zero} p = oh
to-prim-eq {zero} {suc y} p = absurd (zero≠suc p)
to-prim-eq {suc x} {zero} p = absurd (suc≠zero p)
to-prim-eq {suc x} {suc y} p = to-prim-eq (suc-inj p)
instance
Discrete-Nat : Discrete Nat
Discrete-Nat .decide x y with oh? (x == y)
... | yes p = yes (from-prim-eq p)
... | no ¬p = no (¬p ∘ to-prim-eq)Hedberg’s theorem implies
that Nat is a set, i.e., it only has
trivial paths.
opaque
Nat-is-set : is-set Nat
Nat-is-set = Discrete→is-set Discrete-Nat
instance
H-Level-Nat : ∀ {n} → H-Level Nat (2 + n)
H-Level-Nat = basic-instance 2 Nat-is-setArithmetic🔗
Heads up! The arithmetic properties of operations on
the natural numbers are in the module Data.Nat.Properties.
Agda already comes with definitions for addition and multiplication of natural numbers. They are reproduced below, using different names, for the sake of completeness:
plus : Nat → Nat → Nat
plus zero y = y
plus (suc x) y = suc (plus x y)
times : Nat → Nat → Nat
times zero y = zero
times (suc x) y = y + times x yThese match up with the built-in definitions of _+_
and _*_:
plus≡+ : plus ≡ _+_
plus≡+ i zero y = y
plus≡+ i (suc x) y = suc (plus≡+ i x y)
times≡* : times ≡ _*_
times≡* i zero y = zero
times≡* i (suc x) y = y + (times≡* i x y)The exponentiation operator ^ is
defined by recursion on the exponent.
_^_ : Nat → Nat → Nat
x ^ zero = 1
x ^ suc y = x * (x ^ y)
infixr 10 _^_Ordering🔗
We define the order relation _≤_
on the natural numbers as an inductive predicate. We could also define
the relation by recursion on the numbers to be compared, but the
inductive version has much better properties when it comes to type
inference.
data _≤_ : Nat → Nat → Type where
instance
0≤x : ∀ {x} → 0 ≤ x
s≤s : ∀ {x y} → x ≤ y → suc x ≤ suc yinstance
s≤s' : ∀ {x y} → ⦃ x ≤ y ⦄ → suc x ≤ suc y
s≤s' ⦃ x ⦄ = s≤s x
x≤x : ∀ {x} → x ≤ x
x≤x {zero} = 0≤x
x≤x {suc x} = s≤s x≤x
x≤sucy : ∀ {x y} ⦃ p : x ≤ y ⦄ → x ≤ suc y
x≤sucy {.0} {y} ⦃ 0≤x ⦄ = 0≤x
x≤sucy {.(suc _)} {.(suc _)} ⦃ s≤s p ⦄ = s≤s (x≤sucy ⦃ p ⦄)
{-# INCOHERENT x≤x x≤sucy #-}
≤-peel : ∀ {x y : Nat} → suc x ≤ suc y → x ≤ y
≤-peel (s≤s p) = p
¬suc≤0 : ∀ {x} → suc x ≤ 0 → ⊥
¬suc≤0 ()
≤-trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z
≤-trans 0≤x 0≤x = 0≤x
≤-trans 0≤x (s≤s q) = 0≤x
≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q)
factorial : Nat → Nat
factorial zero = 1
factorial (suc n) = suc n * factorial n
Positive : Nat → Type
Positive n = 1 ≤ nWe define the strict ordering on Nat as well, re-using the definition of
_≤_.
_<_ : Nat → Nat → Type
m < n = suc m ≤ n
infix 7 _<_ _≤_≤-sucr : ∀ {x y : Nat} → x ≤ y → x ≤ suc y
≤-sucr 0≤x = 0≤x
≤-sucr (s≤s p) = s≤s (≤-sucr p)
<-weaken : ∀ {x y} → x < y → x ≤ y
<-weaken {x} {suc y} p = ≤-sucr (≤-peel p)As an “ordering combinator”, we can define the maximum of two natural numbers by recursion: The maximum of zero and a successor (on either side) is the successor, and the maximum of successors is the successor of their maximum.
max : Nat → Nat → Nat
max zero zero = zero
max zero (suc y) = suc y
max (suc x) zero = suc x
max (suc x) (suc y) = suc (max x y)Similarly, we can define the minimum of two numbers:
min : Nat → Nat → Nat
min zero zero = zero
min zero (suc y) = zero
min (suc x) zero = zero
min (suc x) (suc y) = suc (min x y)