module Cat.Displayed.Section whereSections of a displayed category🔗
module _ {o ℓ o' ℓ'} {B : Precategory o ℓ} (E : Displayed B o' ℓ') where
private
module B = Precategory B
module E = Displayed EA section of a displayed category consists of a functorial assignment of objects and morphisms
In other words, a section of a displayed category is a vertical functor from the identity bifibration of to We restate the definition in elementary terms to drop the additional unit arguments.
record Section : Type (o ⊔ ℓ ⊔ o' ⊔ ℓ') where
field
S₀ : (x : ⌞ B ⌟) → E ʻ x
S₁ : {x y : ⌞ B ⌟} (f : B.Hom x y) → E.Hom[ f ] (S₀ x) (S₀ y)
S-id : {x : ⌞ B ⌟} → S₁ {x} {x} B.id ≡ E.id'
S-∘ : {x y z : ⌞ B ⌟} (f : B.Hom y z) (g : B.Hom x y) → S₁ (f B.∘ g) ≡ S₁ f E.∘' S₁ gThe equivalence with vertical functors from the identity bifibration is a trivial matter of data repackaging.
open Section
open Displayed-functor
unquoteDecl Section-path = declare-record-path Section-path (quote Section)
section→vertical-functor : Section → Vertical-functor (IdD B) E
section→vertical-functor s .F₀' _ = s .S₀ _
section→vertical-functor s .F₁' _ = s .S₁ _
section→vertical-functor s .F-id' = s .S-id
section→vertical-functor s .F-∘' = s .S-∘ _ _
section≃vertical-functor : Section ≃ Vertical-functor (IdD B) E
section≃vertical-functor .fst = section→vertical-functor
section≃vertical-functor .snd = is-iso→is-equiv is where
is : is-iso section→vertical-functor
is .is-iso.from f .S₀ _ = f .F₀' _
is .is-iso.from f .S₁ _ = f .F₁' _
is .is-iso.from f .S-id = f .F-id'
is .is-iso.from f .S-∘ _ _ = f .F-∘'
is .is-iso.rinv f = Displayed-functor-pathp refl (λ _ → refl) λ _ → refl
is .is-iso.linv s = Section-path refl reflmodule _ {o ℓ o' ℓ'} {B : Precategory o ℓ} {E : Displayed B o' ℓ'} where
private
module E = Displayed E
module B = Cat B
instance
Funlike-Section : Funlike (Section E) B.Ob λ x → E.Ob[ x ]
Funlike-Section = record { _·_ = λ S e → S .Section.S₀ e }We can also specialise the notion of vertical natural transformation to work with sections instead.
record _=>s_ (P Q : Section E) : Type (o ⊔ ℓ ⊔ ℓ') where
no-eta-equality
private
module P = Section P
module Q = Section Q
field
map : (x : ⌞ B ⌟) → E.Hom[ B.id ] (P · x) (Q · x)
com : (x y : ⌞ B ⌟) (f : B.Hom x y)
→ map y E.∘' P.S₁ f E.≡[ B.id-comm-sym ] Q.S₁ f E.∘' map x {-# INLINE _=>s_.constructor #-}
private unquoteDecl eqv = declare-record-iso eqv (quote _=>s_)
instance
H-Level-Natₛ : ∀ {P Q n} → H-Level (P =>s Q) (2 + n)
H-Level-Natₛ = basic-instance 2 (Iso→is-hlevel 2 eqv (hlevel 2))
Extensional-Natₛ
: ∀ {P Q ℓr} ⦃ _ : Extensional ((x : ⌞ B ⌟) → E.Hom[ B.id ] (P · x) (Q · x)) ℓr ⦄
→ Extensional (P =>s Q) ℓr
Extensional-Natₛ = injection→extensional! (λ p → Iso.injective eqv (p ,ₚ prop!)) auto
module _ {o ℓ o' ℓ'} {B : Precategory o ℓ} (E : Displayed B o' ℓ') where
open Disp E
private
module B = Cat B
open Precategory
open Section
open _=>s_
Sections : Precategory (o ⊔ o' ⊔ ℓ ⊔ ℓ') (o ⊔ ℓ ⊔ ℓ')
Sections .Ob = Section E
Sections .Hom = _=>s_
Sections .Hom-set X Y = hlevel 2
Sections .id = record { map = λ x → id' ; com = λ x y f → to-pathp[] id-comm[] }
Sections ._∘_ {S} {T} {U} f g = record
{ map = λ x → hom[ B.idl B.id ] (f .map x ∘' g .map x)
; com = λ x y h → cast[] $
hom[] (f .map y ∘' g .map y) ∘' S .S₁ h ≡[]⟨ unwrap _ ⟩∘'⟨refl ⟩
(f .map y ∘' g .map y) ∘' S .S₁ h ≡[ B.pullr B.id-comm-sym ]⟨ pullr' (λ i → B.id-comm-sym i) (g .com x y h) ⟩
f .map y ∘' T .S₁ h ∘' g .map x ≡[ B.extendl B.id-comm-sym ]⟨ extendl' (λ i → B.id-comm-sym i) (f .com x y h) ⟩
U .S₁ h ∘' f .map x ∘' g .map x ≡[]⟨ refl⟩∘'⟨ wrap _ ⟩
U .S₁ h ∘' hom[] (f .map x ∘' g .map x) ∎
}
Sections .idr f = ext λ x → idr[]
Sections .idl f = ext λ x → idl[]
Sections .assoc f g h = ext λ x → smashr _ _
∙ ap hom[] (from-pathp⁻ (assoc' _ _ _))
∙ sym (smashl _ _ ∙ sym (weave _ _ _ (to-pathp⁻ refl)))