module Cat.Displayed.Comprehension.Coproduct.VeryStrong whereVery strong comprehension coproducts🔗
As noted in strong comprehension coproducts, the elimination principle for comprehension coproducts is quite weak, being more of a recursion principle. Strong coproducts model coproducts with a proper elimination, but as also noted there, we’re lacking large elimination. If we want that, we have to find very strong comprehension coproducts.
Let and be comprehension categories over We say that has very strong coproducts if the canonical substitution
is an isomorphism.
module _
{ob ℓb od ℓd oe ℓe} {B : Precategory ob ℓb}
{D : Displayed B od ℓd} {E : Displayed B oe ℓe}
{D-fib : Cartesian-fibration D} {E-fib : Cartesian-fibration E}
(P : Comprehension-structure D) {Q : Comprehension-structure E}
(coprods : has-comprehension-coproducts D-fib E-fib Q)
where
private
open Cat.Reasoning B
module E = Displayed E
module D = Displayed D
module P = Comprehension D D-fib P
module Q = Comprehension E E-fib Q
open has-comprehension-coproducts coprods very-strong-comprehension-coproducts : Type _
very-strong-comprehension-coproducts =
∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ is-invertible (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩)module very-strong-comprehension-coproducts
{ob ℓb od ℓd oe ℓe} {B : Precategory ob ℓb}
{D : Displayed B od ℓd} {E : Displayed B oe ℓe}
{D-fib : Cartesian-fibration D} {E-fib : Cartesian-fibration E}
(P : Comprehension-structure D) {Q : Comprehension-structure E}
(coprods : has-comprehension-coproducts D-fib E-fib Q)
(vstrong : very-strong-comprehension-coproducts P coprods)
where
private
open Cat.Reasoning B
module E = Displayed E
module D = Displayed D
module P = Comprehension D D-fib P
module Q = Comprehension E E-fib Q
open has-comprehension-coproducts coprods
module vstrong {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) =
is-invertible (vstrong x a)This gives us the familiar first and second projections out of the coproduct.
opaque
∐-fst
: ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ Hom (Γ P.⨾ ∐ x a) (Γ Q.⨾ x)
∐-fst x a = P.πᶜ ∘ vstrong.inv x a
opaque
∐-snd
: ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ Hom (Γ P.⨾ ∐ x a) (Γ Q.⨾ x P.⨾ a)
∐-snd x a = vstrong.inv x aThese come with their respective rules, but they are slightly obfuscated due to having to work with substitutions rather than terms.
opaque
unfolding ∐-fst
∐-fst-β
: ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ ∐-fst x a ∘ (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ≡ P.πᶜ
∐-fst-β x a = cancelr (vstrong.invr x a)
opaque
unfolding ∐-snd
∐-snd-β
: ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ ∐-snd x a ∘ (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ≡ id
∐-snd-β x a = vstrong.invr x aWe also have an law, though this too is still a bit obfuscated.
opaque
unfolding ∐-fst ∐-snd
∐-very-strong-η
: ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ])
→ (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ∘ ∐-snd x a ≡ id
∐-very-strong-η x a = vstrong.invl x aNote that very strong coproducts are always strong.
strong : strong-comprehension-coproducts P coprods
strong = to-strong-comprehension-coproducts P coprods mkstrong where
open make-strong-comprehension-coproducts
mkstrong : make-strong-comprehension-coproducts P coprods
mkstrong .∐-strong-elim σ ν p = ν ∘ ∐-snd _ _
mkstrong .∐-strong-β p = cancelr (∐-snd-β _ _)
mkstrong .∐-strong-sub p = pulll (sym p) ∙ cancelr (∐-very-strong-η _ _)
mkstrong .∐-strong-η p other β η = intror (∐-very-strong-η _ _) ∙ pulll βStrong coproducts over the same category are very strong🔗
Let be a comprehension category over having comprehension coproducts over itself. If these coproducts are strong, then they are automatically very strong. That should make sense: we have have been motivating strong comprehension coproducts as having elimination but no large elimination, but if we only have one “size” going around, then elimination is large elimination!
module _
{ob ℓb oe ℓe} {B : Precategory ob ℓb}
{E : Displayed B oe ℓe}
{E-fib : Cartesian-fibration E}
{P : Comprehension-structure E}
(coprods : has-comprehension-coproducts E-fib E-fib P)
where private
open Cat.Reasoning B
module E where
open Displayed E public
open Cartesian-fibration E E-fib public
module E* {Γ Δ : Ob} (σ : Hom Γ Δ) = Functor (base-change E E-fib σ)
open Comprehension E E-fib P
open has-comprehension-coproducts coprods self-strong-comprehension-coproducts→very-strong
: strong-comprehension-coproducts P coprods
→ very-strong-comprehension-coproducts P coprodsWe begin by defining a first projection by factorizing the following square. This really is special: in the case of strong comprehension coproducts, and correspond to different context extensions (analogy: the first extends the context by a kind, the second by a type). But since we’re dealing with very strong coproducts, they’re the same extension.
We can then define the second projection using the first.
The and laws follow from some short calculations.
self-strong-comprehension-coproducts→very-strong strong {Γ = Γ} x a =
make-invertible
∐-strong-snd
∐-strong-snd-η
(∐-strong-β ∐-strong-fst-β)
where
open strong-comprehension-coproducts P coprods strong
∐-strong-fst : Hom (Γ ⨾ ∐ x a) (Γ ⨾ x)
∐-strong-fst = ∐-strong-elim πᶜ πᶜ (sub-proj ⟨ x , a ⟩)
∐-strong-fst-β : ∐-strong-fst ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ≡ πᶜ ∘ id
∐-strong-fst-β = ∐-strong-β _ ∙ sym (idr _)
∐-strong-snd : Hom (Γ ⨾ ∐ x a) (Γ ⨾ x ⨾ a)
∐-strong-snd = ∐-strong-elim ∐-strong-fst id ∐-strong-fst-β
∐-strong-snd-forget : πᶜ ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡ πᶜ
∐-strong-snd-forget =
πᶜ ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡⟨ pulll (sub-proj ⟨ x , a ⟩) ⟩
(πᶜ ∘ πᶜ) ∘ ∐-strong-snd ≡⟨ pullr (∐-strong-sub ∐-strong-fst-β) ⟩
(πᶜ ∘ ∐-strong-fst) ≡⟨ ∐-strong-sub (sub-proj ⟨ x , a ⟩) ⟩
πᶜ ∎
∐-strong-snd-η : (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡ id
∐-strong-snd-η =
∐-strong-η refl _ (cancelr (∐-strong-β ∐-strong-fst-β)) ∐-strong-snd-forget
∙ ∐-strong-id