module Data.Bool whereThe booleans🔗
open import Data.Bool.Base publicPattern matching on only the first argument might seem like a somewhat impractical choice due to its asymmetry - however, it shortens a lot of proofs since we get a lot of judgemental equalities for free. For example, see the following statements:
and-associative : (x y z : Bool) → and x (and y z) ≡ and (and x y) z
and-associative false y z = refl
and-associative true y z = refl
or-associative : (x y z : Bool) → or x (or y z) ≡ or (or x y) z
or-associative false y z = refl
or-associative true y z = refl
and-commutative : (x y : Bool) → and x y ≡ and y x
and-commutative false false = refl
and-commutative false true = refl
and-commutative true false = refl
and-commutative true true = refl
or-commutative : (x y : Bool) → or x y ≡ or y x
or-commutative false false = refl
or-commutative false true = refl
or-commutative true false = refl
or-commutative true true = refl
and-truer : (x : Bool) → and x true ≡ x
and-truer false = refl
and-truer true = refl
and-falser : (x : Bool) → and x false ≡ false
and-falser false = refl
and-falser true = refl
and-truel : (x : Bool) → and true x ≡ x
and-truel x = refl
or-falser : (x : Bool) → or x false ≡ x
or-falser false = refl
or-falser true = refl
or-truer : (x : Bool) → or x true ≡ true
or-truer false = refl
or-truer true = refl
or-falsel : (x : Bool) → or false x ≡ x
or-falsel x = refl
and-absorbs-orr : (x y : Bool) → and x (or x y) ≡ x
and-absorbs-orr false y = refl
and-absorbs-orr true y = refl
or-absorbs-andr : (x y : Bool) → or x (and x y) ≡ x
or-absorbs-andr false y = refl
or-absorbs-andr true y = refl
and-distrib-orl : (x y z : Bool) → and x (or y z) ≡ or (and x y) (and x z)
and-distrib-orl false y z = refl
and-distrib-orl true y z = refl
or-distrib-andl : (x y z : Bool) → or x (and y z) ≡ and (or x y) (or x z)
or-distrib-andl false y z = refl
or-distrib-andl true y z = refl
and-idempotent : (x : Bool) → and x x ≡ x
and-idempotent false = refl
and-idempotent true = refl
or-idempotent : (x : Bool) → or x x ≡ x
or-idempotent false = refl
or-idempotent true = refl
and-distrib-orr : (x y z : Bool) → and (or x y) z ≡ or (and x z) (and y z)
and-distrib-orr true y z =
sym (or-absorbs-andr z y) ∙ ap (or z) (and-commutative z y)
and-distrib-orr false y z = refl
or-distrib-andr : (x y z : Bool) → or (and x y) z ≡ and (or x z) (or y z)
or-distrib-andr true y z = refl
or-distrib-andr false y z =
sym (and-absorbs-orr z y) ∙ ap (and z) (or-commutative z y)and-reflect-true-l : ∀ {x y} → and x y ≡ true → x ≡ true
and-reflect-true-l {x = true} p = refl
and-reflect-true-l {x = false} p = p
and-reflect-true-r : ∀ {x y} → and x y ≡ true → y ≡ true
and-reflect-true-r {x = true} {y = true} p = refl
and-reflect-true-r {x = false} {y = true} p = refl
and-reflect-true-r {x = true} {y = false} p = p
and-reflect-true-r {x = false} {y = false} p = p
or-reflect-true : ∀ {x y} → or x y ≡ true → x ≡ true ⊎ y ≡ true
or-reflect-true {x = true} {y = y} p = inl refl
or-reflect-true {x = false} {y = true} p = inr refl
or-reflect-true {x = false} {y = false} p = absurd (true≠false (sym p))
or-reflect-false-l : ∀ {x y} → or x y ≡ false → x ≡ false
or-reflect-false-l {x = true} p = absurd (true≠false p)
or-reflect-false-l {x = false} p = refl
or-reflect-false-r : ∀ {x y} → or x y ≡ false → y ≡ false
or-reflect-false-r {x = true} {y = true} p = absurd (true≠false p)
or-reflect-false-r {x = true} {y = false} p = refl
or-reflect-false-r {x = false} {y = true} p = absurd (true≠false p)
or-reflect-false-r {x = false} {y = false} p = refl
and-reflect-false : ∀ {x y} → and x y ≡ false → x ≡ false ⊎ y ≡ false
and-reflect-false {x = true} {y = y} p = inr p
and-reflect-false {x = false} {y = y} p = inl reflAll the properties above hold both in classical and constructive mathematics, even in minimal logic that fails to validate both the law of the excluded middle as well as the law of noncontradiction. However, the boolean operations satisfy both of these laws:
not-and≡or-not : (x y : Bool) → not (and x y) ≡ or (not x) (not y)
not-and≡or-not false y = refl
not-and≡or-not true y = refl
not-or≡and-not : (x y : Bool) → not (or x y) ≡ and (not x) (not y)
not-or≡and-not false y = refl
not-or≡and-not true y = refl
or-complementl : (x : Bool) → or (not x) x ≡ true
or-complementl false = refl
or-complementl true = refl
and-complementl : (x : Bool) → and (not x) x ≡ false
and-complementl false = refl
and-complementl true = reflFurthermore, note that not has
no fixed points.
not-no-fixed : ∀ {x} → x ≡ not x → ⊥
not-no-fixed {x = true} p = absurd (true≠false p)
not-no-fixed {x = false} p = absurd (true≠false (sym p))Exclusive disjunction (usually known as XOR) also yields additional structure - in particular, it can be viewed as an addition operator in a ring whose multiplication is defined by conjunction:
xor : Bool → Bool → Bool
xor false y = y
xor true y = not y
xor-associative : (x y z : Bool) → xor x (xor y z) ≡ xor (xor x y) z
xor-associative false y z = refl
xor-associative true false z = refl
xor-associative true true z = not-involutive z
xor-commutative : (x y : Bool) → xor x y ≡ xor y x
xor-commutative false false = refl
xor-commutative false true = refl
xor-commutative true false = refl
xor-commutative true true = refl
xor-falser : (x : Bool) → xor x false ≡ x
xor-falser false = refl
xor-falser true = refl
xor-truer : (x : Bool) → xor x true ≡ not x
xor-truer false = refl
xor-truer true = refl
xor-inverse-self : (x : Bool) → xor x x ≡ false
xor-inverse-self false = refl
xor-inverse-self true = refl
and-distrib-xorr : (x y z : Bool) → and (xor x y) z ≡ xor (and x z) (and y z)
and-distrib-xorr false y z = refl
and-distrib-xorr true y false = and-falser (not y) ∙ sym (and-falser y)
and-distrib-xorr true y true = (and-truer (not y)) ∙ ap not (sym (and-truer y))Material implication between booleans also interacts nicely with many of the other operations:
imp : Bool → Bool → Bool
imp false y = true
imp true y = y
imp-truer : (x : Bool) → imp x true ≡ true
imp-truer false = refl
imp-truer true = reflFurthermore, material implication is equivalent to the classical definition.
imp-not-or : ∀ x y → or (not x) y ≡ imp x y
imp-not-or false y = refl
imp-not-or true y = reflnot-inj : ∀ {x y} → not x ≡ not y → x ≡ y
not-inj {x = true} {y = true} p = refl
not-inj {x = true} {y = false} p = sym p
not-inj {x = false} {y = true} p = sym p
not-inj {x = false} {y = false} p = refl
ne→is-not : ∀ {x y} → x ≠ y → x ≡ not y
ne→is-not {true} {true} p = absurd (p refl)
ne→is-not {true} {false} p = refl
ne→is-not {false} {true} p = refl
ne→is-not {false} {false} p = absurd (p refl)Aut(Bool)🔗
We characterise the type Bool ≡ Bool. There are exactly
two paths, and we can decide which path we’re looking at by seeing how
it acts on the element true.
First, two small lemmas: we can tell whether we’re looking at the identity equivalence or the “not” equivalence by seeing how it acts on the constructors.
module _ (e : Bool ≃ Bool) where
private module e = Equiv e
bool-equiv-id : ∀ x y → e.to x ≡ x → e.to y ≡ y
bool-equiv-id true true α = α
bool-equiv-id false false α = α
bool-equiv-id true false α with e.to false in β
... | false = refl
... | true = absurd (true≠false (e.injective₂ α (Id≃path.to β)))
bool-equiv-id false true α with e.to true in β
... | false = absurd (false≠true (e.injective₂ α (Id≃path.to β)))
... | true = refl
bool-equiv-not : ∀ x y → e.to x ≡ not x → e.to y ≡ not y
bool-equiv-not true true α = α
bool-equiv-not false false α = α
bool-equiv-not true false α with e.to false in β
... | true = refl
... | false = absurd (true≠false (e.injective₂ α (Id≃path.to β)))
bool-equiv-not false true α with e.to true in β
... | false = refl
... | true = absurd (false≠true (e.injective₂ α (Id≃path.to β)))
bool-equiv-not' : ∀ x y → e.to x ≠ x → e.to y ≡ not y
bool-equiv-not' x y α = bool-equiv-not x y (ne→is-not α)private
classify : Bool ≃ Bool → Bool
classify e with e .fst true ≡? true
... | yes _ = true
... | no _ = false
named : Bool → Bool ≃ Bool
named = if_then id≃ else not≃
classify-named : (x : Bool) → classify (named x) ≡ x
classify-named true = refl
classify-named false = refl
named-classify : (e : Bool ≃ Bool) → ∀ x → named (classify e) .fst x ≡ e .fst x
named-classify e x with e .fst true ≡? true
... | yes p = sym (bool-equiv-id e true x p)
... | no ¬p = sym (bool-equiv-not e true x (ne→is-not ¬p))
Bool-automorphisms : (Bool ≃ Bool) ≃ Bool
Bool-automorphisms .fst = classify
Bool-automorphisms .snd = is-iso→is-equiv record
{ from = named
; rinv = classify-named
; linv = λ e → Σ-pathp (funext (named-classify e))
(is-prop→pathp (λ _ → is-equiv-is-prop _) _ _)
}
Bool-equiv-elim : ∀ {ℓ} (P : Bool ≃ Bool → Type ℓ) → P id≃ → P not≃ → ∀ e → P e
Bool-equiv-elim P pid pnot e with inspect (e .fst true)
... | true , p = subst P (ext λ x → sym (bool-equiv-id e true x p)) pid
... | false , p = subst P (ext λ x → sym (bool-equiv-not e true x p)) pnot