module Homotopy.Space.Suspension.Pi2 {ℓ} (grp : ConcreteGroup ℓ) (hg : HSpace (grp .B)) whereπ₂ of a suspension🔗
open ConcreteGroup grp renaming (B to BG ; pt to G₀) using ()
open HSpace {ℓ = ℓ} {A* = BG} hg
private
G : Type ℓ
G = ⌞ grp ⌟
ΣG : Type ℓ
ΣG = Susp G
∥_∥₁ : Type ℓ → Type ℓ
∥ X ∥₁ = n-Tr X 3
μr : ∀ a → ⌞ G ⌟ ≃ ⌞ G ⌟
μr a = _ , μ-invr aWe will prove that the second homotopy group of the suspension of a pointed connected groupoid with an H-space structure (hence an abelian concrete group) is
We start by defining a type family Hopf over
which is
on both poles and sends the
meridian to the H-space
multiplication
on the right, which is an equivalence by assumption. We will show, by an
encode-decode argument, that the groupoid truncation
is equivalent to the fibre of Hopf
over
As the name implies, the Hopf
type family is the synthetic equivalent of the classic Hopf fibration,
though here we have evidently generalised it beyond a map
Below we prove that the total space of
the Hopf fibration is the join
Hopf : ΣG → Type _
Hopf north = G
Hopf south = G
Hopf (merid x i) = ua (μr x) iTo encode, we use truncation recursion, since Hopf is a family of groupoids by
construction, and since we have
we can transport it along a
to get a point in an arbitrary fibre.
encode' : ∀ x → ∥ north ≡ x ∥₁ → Hopf x
encode' x = n-Tr-rec (tr x) λ p → subst Hopf p G₀ where
tr : ∀ x → is-groupoid (Hopf x)
tr = Susp-elim-prop (λ s → hlevel 1) (grp .has-is-groupoid) (grp .has-is-groupoid)To decode an element of Hopf we
use suspension recursion. On the north pole we can use the suspension
map
on the south pole this is just a meridian; and on the meridians we must
prove that these agree. Through a short calculation we can reduce this
to a coherence lemma relating the composition of meridians and the
H-space multiplication.
decode' : ∀ x → Hopf x → ∥ north ≡ x ∥₁
decode' = Susp-elim _ (n-Tr.inc ∘ suspend BG) (n-Tr.inc ∘ merid) λ x → ua→ λ a → to-pathp $
inc (subst (north ≡_) (merid x) (suspend BG a)) ≡⟨ ap n-Tr.inc (subst-path-right (suspend BG a) (merid x)) ⟩
inc ((merid a ∙ sym (merid G₀)) ∙ merid x) ≡˘⟨ ap n-Tr.inc (∙-assoc _ _ _) ⟩
inc (merid a ∙ sym (merid G₀) ∙ merid x) ≡⟨ merid-μ a x ⟩
inc (merid (μ a x)) ∎
whereTo show this coherence, we can use the wedge connectivity lemma. It will
suffice to do so, in turn, when
when
and then to show that these agree. In either case we must show something
like
which is easy to do with the pre-existing coherence lemmas ∙∙-introl and ∙∙-intror, and the H-space unit laws.
merid-μ : ∀ a b → inc (merid a ∙ sym (merid G₀) ∙ merid b) ≡ inc (merid (μ a b))
merid-μ =
let
α = merid G₀
P : (a b : ⌞ G ⌟) → Type ℓ
P a b = Path ∥ north ≡ south ∥₁ (inc (merid a ∙ sym α ∙ merid b)) (inc (merid (μ a b)))
p1 : ∀ a → P a G₀
p1 a = ap n-Tr.inc $
sym (double-composite _ _ _)
∙∙ sym (∙∙-intror (merid a) (sym α))
∙∙ ap merid (sym (idr a))
p2 : ∀ b → P G₀ b
p2 b = ap n-Tr.inc $
sym (double-composite _ _ _)
∙∙ sym (∙∙-introl (merid b) α)
∙∙ ap merid (sym (idl b))Moreover, it is easy to show that these agree: by construction we’re
left with showing that ∙∙-introl and ∙∙-intror
agree when all three paths are the same, and by path induction we may
assume that this one path is refl; In that case, they agree
definitionally.
coh : p1 G₀ ≡ p2 G₀
coh = ap (ap n-Tr.inc) $ ap₂ (_∙∙_∙∙_ (sym (double-composite α (sym α) α)))
(ap sym (J (λ y p → ∙∙-intror p (sym p) ≡ ∙∙-introl p p) refl α))
(ap (ap merid ∘ sym) (sym id-coh))
c = is-connected∙→is-connected (grp .has-is-connected)
in Wedge.elim {A∙ = BG} {BG} 0 0 c c (λ _ _ → hlevel 2) p1 p2 coh
We have thus constructed maps between
and the truncation of the based path space
We must then show that these are inverses, which, in both directions,
are simple calculations.
opaque
ΩΣG≃G : ∥ north {A = fst BG} ≡ north ∥₁ ≃ G
ΩΣG≃G .fst = encode' north
opaque
ΩΣG≃G : ∥ north {A = fst BG} ≡ north ∥₁ ≃ G
ΩΣG≃G .fst = encode' north ΩΣG≃G .snd = is-iso→is-equiv (iso (decode' north) invl (invr north)) where abstract
invl : ∀ a → encode' north (decode' north a) ≡ a
invl a = Regularity.fast! (
Equiv.from (flip μ G₀ , μ-invr G₀) (μ G₀ a) ≡⟨ ap (λ e → Equiv.from e (μ G₀ a)) {x = _ , μ-invr G₀} {y = id≃} (ext idr) ⟩
μ G₀ a ≡⟨ idl a ⟩
a ∎)To show that decoding inverts encoding, we use the extra generality afforded by the parameter to apply path induction.
invr : (x : ΣG) (p : ∥ north ≡ x ∥₁) → decode' x (encode' x p) ≡ p
invr x = n-Tr-elim! _ $ J
(λ x p → decode' x (encode' x (inc p)) ≡ inc p)
(ap n-Tr.inc
( ap₂ _∙_ (ap merid (transport-refl _)) refl
∙ ∙-invr (merid G₀)))This equivalence is pointed, almost by definition.
ΩΣG≃∙G : n-Tr∙ (Ω¹ (Σ¹ BG)) 3 ≃∙ BG
ΩΣG≃∙G = ΩΣG≃G , transport-refl _Furthermore, note that, by construction, the inverse pointed map
of this equivalence is none other than suspend∙ followed by the inclusion into
the groupoid truncation.
ΩΣG≃∙G-inv : Equiv∙.from∙ ΩΣG≃∙G ≡ inc∙ ∘∙ suspend∙ BG
ΩΣG≃∙G-inv = homogeneous-funext∙ λ _ → reflFinally, we can apply to the equivalence above and use some pre-existing lemmas to show that the set truncation of the double loop space is equivalent to A couple more short calculations which we omit show that this equivalence preserves path composition, i.e. is an isomorphism of homotopy groups and that the inverse map is the expected suspension map up to truncation.
Ω²ΣG≃ΩG : ∥ ⌞ Ωⁿ 2 (Σ¹ BG) ⌟ ∥₀ ≃ ⌞ Ω¹ BG ⌟
Ω²ΣG≃ΩG =
⌞ πₙ₊₁ 1 (Σ¹ BG) ⌟ ≃⟨ n-Tr-set ⟩
⌞ n-Tr∙ (Ωⁿ 2 (Σ¹ BG)) 2 ⌟ ≃⟨ n-Tr-Ω¹ (Ω¹ (Σ¹ BG)) 1 .fst ⟩
⌞ Ω¹ (n-Tr∙ (Ω¹ (Σ¹ BG)) 3) ⌟ ≃⟨ Ω¹-ap ΩΣG≃∙G .fst ⟩
⌞ Ω¹ BG ⌟ ≃∎
opaque
unfolding Ω¹-ap
Ω²ΣG≃ΩG-pres : is-group-hom
(πₙ₊₁ 1 (Σ¹ BG) .snd)
(π₁Groupoid.π₁ BG (grp .has-is-groupoid) .snd)
(Ω²ΣG≃ΩG .fst)
Ω²ΣG≃ΩG-inv
: ∀ (l : ⌞ Ω¹ BG ⌟)
→ Equiv.from Ω²ΣG≃ΩG l ≡ inc (Ω¹-map (suspend∙ BG) .fst l) Ω²ΣG≃ΩG-pres = record { pres-⋆ = elim! λ p q → trace p q .snd } where
open Σ Ω²ΣG≃ΩG renaming (fst to f0) using ()
instance
_ : ∀ {n} → H-Level ⌞ G ⌟ (3 + n)
_ = basic-instance 3 (grp .has-is-groupoid)
trace : (p q : refl ≡ refl) → (∥ ⌞ Ωⁿ 2 (Σ¹ BG) ⌟ ∥₀ , inc (p ∙ q)) ≃∙ (⌞ Ω¹ BG ⌟ , f0 (inc p) ∙ f0 (inc q))
trace p q =
⌞ πₙ₊₁ 1 (Σ¹ BG) ⌟ , inc (p ∙ q) ≃∙⟨ n-Tr-set , refl ⟩
⌞ n-Tr∙ (Ωⁿ 2 (Σ¹ BG)) 2 ⌟ , inc (p ∙ q) ≃∙⟨ n-Tr-Ω¹ _ 1 .fst , n-Tr-Ω¹-∙ _ 1 p q ⟩
⌞ Ω¹ (n-Tr∙ (Ω¹ (Σ¹ BG)) 3) ⌟ , _ ≃∙⟨ Ω¹-ap ΩΣG≃∙G .fst , Ω¹-map-∙ (Equiv∙.to∙ ΩΣG≃∙G) (n-Tr-Ω¹ _ 1 · inc p) (n-Tr-Ω¹ _ 1 · inc q) ⟩
⌞ Ω¹ BG ⌟ , f0 (inc p) ∙ f0 (inc q) ≃∙∎
Ω²ΣG≃ΩG-inv l = trace .snd where
trace : (⌞ Ω¹ BG ⌟ , l) ≃∙ (⌞ πₙ₊₁ 1 (Σ¹ BG) ⌟ , inc (Ω¹-map (suspend∙ BG) · l))
trace =
⌞ Ω¹ BG ⌟ , l ≃∙⟨ Ω¹-ap ΩΣG≃∙G .fst e⁻¹ , (Ω¹-ap-inv ΩΣG≃∙G ·ₚ l) ∙ ap (λ x → Ω¹-map x · l) ΩΣG≃∙G-inv ⟩
⌞ Ω¹ (n-Tr∙ (Ω¹ (Σ¹ BG)) 3) ⌟ , Ω¹-map (inc∙ ∘∙ suspend∙ BG) · l ≃∙˘⟨ n-Tr-Ω¹ _ 1 .fst , (n-Tr-Ω¹-inc _ 1 ·ₚ _) ∙ (Ω¹-map-∘ inc∙ (suspend∙ BG) ·ₚ l) ⟩
⌞ n-Tr∙ (Ωⁿ 2 (Σ¹ BG)) 2 ⌟ , inc (Ω¹-map (suspend∙ BG) · l) ≃∙˘⟨ n-Tr-set , refl ⟩
⌞ πₙ₊₁ 1 (Σ¹ BG) ⌟ , inc (Ω¹-map (suspend∙ BG) · l) ≃∙∎π₂ΣG≅ΩG : πₙ₊₁ 1 (Σ¹ BG) Groups.≅ π₁Groupoid.π₁ BG (grp .has-is-groupoid)
π₂ΣG≅ΩG = total-iso Ω²ΣG≃ΩG Ω²ΣG≃ΩG-presThe Hopf fibration🔗
We can now prove that the total space of the Hopf fibration defined above is the join of with itself.
join→hopf : (G ∗ G) → Σ _ Hopf
join→hopf (inl x) = north , x
join→hopf (inr x) = south , x
join→hopf (join a b i) = record
{ fst = merid (a \\ b) i
; snd = attach (∂ i) (λ { (i = i0) → a ; (i = i1) → b })
(inS (μ-\\-l a b i))
}join→hopf-split : ∀ x p → fibre join→hopf (x , p)
join→hopf-split = Susp-elim _
(λ p → inl p , refl)
(λ p → inr p , refl)
(λ x i → filler x i i1)
module surj where module _ (x : fst BG) where
coh : ∀ a → PathP
(λ i → fibre join→hopf (merid x i , ua-inc (μr x) a i))
(inl a , refl) (inr (μ a x) , refl)
coh a i .fst = join a (μ a x) i
coh a i .snd j .fst = merid (μ-\\-r a x j) i
coh a i .snd j .snd = attach (∂ i)
(λ { (i = i0) → a ; (i = i1) → μ a x })
(inS (∨-square (μ-zig a x) j i))
open ua→ {e = μr x} {B = λ i z → fibre join→hopf (merid x i , z)} {f₀ = λ p → inl p , refl} {f₁ = λ p → inr p , refl} coh public
hopf→join : (Σ _ Hopf) → G ∗ G
hopf→join a = uncurry join→hopf-split a .fst
hopf→join→hopf : is-right-inverse hopf→join join→hopf
hopf→join→hopf a = uncurry join→hopf-split a .snd
join→hopf→join : is-left-inverse hopf→join join→hopf
join→hopf→join (inl x) = refl
join→hopf→join (inr x) = refl
join→hopf→join (join a b i) =
let it = attach (∂ i) (λ { (i = i0) → a ; (i = i1) → b }) (inS (μ-\\-l a b i)) in
comp (λ l → surj.filler (a \\ b) i l it .fst ≡ join a b i) (∂ i) λ where
j (j = i0) → λ k → join a (μ-\\-l a b (i ∨ k)) (~ k ∨ i)
j (i = i0) → λ k → join a (μ-\\-l a b k) (~ j ∧ ~ k)
j (i = i1) → λ k → inr b
∫Hopf≃join : Σ _ Hopf ≃ (⌞ G ⌟ ∗ ⌞ G ⌟)
∫Hopf≃join .fst = hopf→join
∫Hopf≃join .snd = is-iso→is-equiv (iso join→hopf join→hopf→join hopf→join→hopf)