module Order.Diagram.Bottom {o â„“} (P : Poset o â„“) whereopen Order.Reasoning P
open is-lub
open LubBottom elements🔗
A bottom element in a partial order is an element that is smaller than any other element of This is the same as being a least upper upper bound for the empty family
is-bottom : Ob → Type _
is-bottom bot = ∀ x → bot ≤ x
record Bottom : Type (o ⊔ ℓ) where
no-eta-equality
field
bot : Ob
has-bottom : is-bottom bot
¡ : ∀ {x} → bot ≤ x
¡ = has-bottom _
is-bottom→is-lub : ∀ {lub} {f : ⊥ → _} → is-bottom lub → is-lub P f lub
is-bottom→is-lub is-bot .least x _ = is-bot x
is-lub→is-bottom : ∀ {lub} {f : ⊥ → _} → is-lub P f lub → is-bottom lub
is-lub→is-bottom lub x = lub .least x λ ()is-bottom-is-prop : ∀ x → is-prop (is-bottom x)
is-bottom-is-prop _ = hlevel 1
bottom-unique : ∀ {x y} → is-bottom x → is-bottom y → x ≡ y
bottom-unique p q = ≤-antisym (p _) (q _)
Bottom-is-prop : is-prop Bottom
Bottom-is-prop p q i .Bottom.bot =
bottom-unique (Bottom.has-bottom p) (Bottom.has-bottom q) i
Bottom-is-prop p q i .Bottom.has-bottom =
is-prop→pathp
(λ i → is-bottom-is-prop (bottom-unique (Bottom.has-bottom p) (Bottom.has-bottom q) i))
(Bottom.has-bottom p) (Bottom.has-bottom q) i
instance
H-Level-Bottom
: ∀ {n}
→ H-Level Bottom (suc n)
H-Level-Bottom = prop-instance Bottom-is-prop
Bottom→Lub : ∀ {f : ⊥ → _} → Bottom → Lub P f
Bottom→Lub bottom .Lub.lub = Bottom.bot bottom
Bottom→Lub bottom .Lub.has-lub = is-bottom→is-lub (Bottom.has-bottom bottom)
Lub→Bottom : ∀ {f : ⊥ → _} → Lub P f → Bottom
Lub→Bottom lub .Bottom.bot = Lub.lub lub
Lub→Bottom lub .Bottom.has-bottom = is-lub→is-bottom (Lub.has-lub lub)
is-bottom≃is-lub : ∀ {lub} {f} → is-equiv (is-bottom→is-lub {lub} {f})
is-bottom≃is-lub = biimp-is-equiv! _ is-lub→is-bottom
Bottom≃Lub : ∀ {f} → is-equiv (Bottom→Lub {f})
Bottom≃Lub = biimp-is-equiv! _ Lub→BottomAs initial objects🔗
Bottoms are the decategorifcation of initial objects; we don’t need to require the uniqueness of the universal morphism, as we’ve replaced our hom-sets with hom-props!
is-bottom→initial : ∀ {x} → is-bottom x → is-initial (poset→category P) x
is-bottom→initial is-bot x .centre = is-bot x
is-bottom→initial is-bot x .paths _ = ≤-thin _ _
initial→is-bottom : ∀ {x} → is-initial (poset→category P) x → is-bottom x
initial→is-bottom initial x = initial x .centre