module Cat.Total.Instances.Reflective {o o' ℓ}
{A : Precategory o ℓ} {C : Precategory o' ℓ}
{L : Functor A C} {ι : Functor C A}
(adj : L ⊣ ι) (reflective : is-reflective adj) (B-total : is-total A) where
open is-total
private
open module C = Cr C
module A = Cr A
module ι = FFr ι reflective
module L = Fr L
open module B-total = is-total B-total renaming (さ to さB)
Subcategories of total categories🔗
Any reflective subcategory of a total category is total.
In particular, the functor is equal to yoneda, as is fully faithful.
: Functor C (PSh ℓ C)
ι' = (precompose ι.op F∘ よ A) F∘ ι
ι'
: ι' ≅ⁿ よ C
ni = to-natural-iso record
ni { eta = λ _ → NT (λ y p → ι.from p)
λ _ _ f → ext λ g → ι.from-∘ ∙ (refl⟩∘⟨ ι.η _)
; inv = λ _ → yo _ (ι.F₁ id)
; eta∘inv = λ _ → ext λ _ f → ap ι.from (ι.eliml refl) ∙ ι.η f
; inv∘eta = λ _ → ext λ _ _ → ι.eliml refl ∙ ι.ε _
; natural = λ _ _ _ → ext λ _ _ → ι.pouncer refl }
Furthermore, it has a has a left adjoint given by composition of our reflector and the left adjoint to yoneda for
: Functor (PSh ℓ C) C
L' = L F∘ (さB F∘ precompose L.op)
L'
: L' ⊣ ι'
L'⊣ι' = LF⊣GR
L'⊣ι' (LF⊣GR (precomposite-adjunction (opposite-adjunction adj)) B-total.has-よ-adj)
adj
: is-total C
reflective-total→is-total .さ = L'
reflective-total→is-total .has-よ-adj = adjoint-natural-isor ni L'⊣ι' reflective-total→is-total