module Cat.Instances.Slice.Presheaf {o ℓ} {C : Precategory o ℓ} whereSlices of presheaf categories🔗
We prove that slices of a presheaf category are again presheaf categories. Specifically, for a presheaf, we have an isomorphism where denotes the category of elements of
private
variable κ : Level
module C = Precategory C
open Precategory
open Element-hom
open Element
open Functor
open /-Obj
open /-Hom
open _=>_An object in the slice consists of a functor together with a natural transformation To transform this data into a functor observe that for each element in the fibre is a set. But why this choice in particular? Well, observe that is essentially the total space of — so that what we’re doing here is proving an equivalence between fibrations and dependent functions! This is in line with the existence of object classifiers, and in the 1-categorical level, with slices of Sets.
In fact, since we have that latter equivalence is a special case of the one constructed here — where in the calculation below, denotes the constant presheaf The category of elements of a presheaf consists of pairs where of which there is only one choice, and
module _ {P : Functor (C ^op) (Sets κ)} where
private module P = Functor P
slice-ob→presheaf
: Ob (Slice Cat[ C ^op , Sets κ ] P)
→ Functor (∫ C P ^op) (Sets κ)
slice-ob→presheaf sl .F₀ (elem x s) = el! (fibre (sl .map .η x) s)
slice-ob→presheaf sl .F₁ eh (i , p) =
sl .dom .F₁ (eh .hom) i
, happly (sl .map .is-natural _ _ _) _ ∙∙ ap (P.₁ _) p ∙∙ eh .commute slice-ob→presheaf sl .F-id =
funext λ x → Σ-prop-path! (happly (sl .dom .F-id) _)
slice-ob→presheaf sl .F-∘ f g =
funext λ x → Σ-prop-path! (happly (sl .dom .F-∘ _ _) _)
private abstract
lemma
: ∀ (y : Functor (∫ C P ^op) (Sets κ))
{o o'} {s} {s'} {el : y ʻ (elem o s)}
{f : C .Hom o' o} (p : P .F₁ f s ≡ s')
→ subst (λ e → y ʻ elem o' e) p (y .F₁ (elem-hom f refl) el)
≡ y .F₁ (elem-hom f p) el
lemma y {o = o} {o' = o'} {el = it} {f = f} =
J (λ s' p → subst (λ e → y ʻ (elem o' e)) p (y .F₁ (elem-hom f refl) it)
≡ y .F₁ (elem-hom f p) it)
(transport-refl _)Keeping with the theme, in the other direction, we take a total space
rather than a family of fibres, with fibration being the first
projection fst:
presheaf→slice-ob : Functor (∫ C P ^op) (Sets κ) → Ob (Slice Cat[ C ^op , Sets κ ] P)
presheaf→slice-ob y = obj where
obj : /-Obj {C = Cat[ _ , _ ]} P
obj .dom .F₀ c .∣_∣ = Σ[ sect ∈ P ʻ c ] y ʻ elem c sect
obj .dom .F₀ c .is-tr = hlevel 2
obj .dom .F₁ f (x , p) = P.₁ f x , y .F₁ (elem-hom f refl) p
obj .map .η x = fst obj .dom .F-id {ob} = funext λ { (x , p) → Σ-path (happly (P.F-id) x) (lemma y _ ∙ happly (y .F-id) _) }
obj .dom .F-∘ f g = funext λ { (x , p) →
Σ-path (happly (P.F-∘ f g) x)
( lemma y _
∙∙ ap (λ e → y .F₁ (elem-hom (g C.∘ f) e) p) (P.₀ _ .is-tr _ _ _ _)
∙∙ happly (y .F-∘ (elem-hom f refl) (elem-hom g refl)) _) }
obj .map .is-natural _ _ _ = reflSince the rest of the construction is routine calculation, we present it without comment.
slice→total : Functor (Slice Cat[ C ^op , Sets κ ] P) Cat[ (∫ C P) ^op , Sets κ ]
slice→total = func where
func : Functor (Slice Cat[ C ^op , Sets κ ] P) Cat[ (∫ C P) ^op , Sets κ ]
func .F₀ = slice-ob→presheaf
func .F₁ {x} {y} h .η i arg =
h .map .η (i .ob) (arg .fst) , h .com ηₚ _ $ₚ arg .fst ∙ arg .snd
func .F₁ {x} {y} h .is-natural _ _ _ = funext λ i →
Σ-prop-path! (happly (h .map .is-natural _ _ _) _)
func .F-id = ext λ x y p → Σ-prop-path! refl
func .F-∘ f g = ext λ x y p → Σ-prop-path! refl
slice→total-is-ff : is-fully-faithful slice→total
slice→total-is-ff {x} {y} = is-iso→is-equiv (iso inv rinv linv) where
inv : Hom Cat[ ∫ C P ^op , Sets _ ] _ _
→ Slice Cat[ C ^op , Sets _ ] P .Hom _ _
inv nt .map .η i o = nt .η (elem _ (x .map .η i o)) (o , refl) .fst
inv nt .map .is-natural _ _ f = funext λ z →
ap (λ e → nt .η _ e .fst) (Σ-prop-path! refl)
∙ ap fst (happly (nt .is-natural _ _
(elem-hom f (happly (sym (x .map .is-natural _ _ _)) _))) _)
inv nt .com = ext λ z w →
nt .η (elem _ (x .map .η _ _)) (w , refl) .snd
rinv : is-right-inverse inv (F₁ slice→total)
rinv nt = ext λ where
o z p → Σ-prop-path! λ i →
nt .η (elem (o .ob) (p i)) (z , λ j → p (i ∧ j)) .fst
linv : is-left-inverse inv (F₁ slice→total)
linv sh = ext λ _ _ → refl
open is-precat-iso
slice→total-is-iso : is-precat-iso slice→total
slice→total-is-iso .has-is-ff = slice→total-is-ff
slice→total-is-iso .has-is-iso = is-iso→is-equiv isom where
open is-iso
isom : is-iso slice-ob→presheaf
isom .from = presheaf→slice-obProving that the constructions presheaf→slice-ob and slice-ob→presheaf are inverses is mosly
incredibly fiddly path algebra, so we omit the proof.
isom .rinv x =
Functor-path
(λ i → n-ua (Fibre-equiv (λ a → x ʻ elem (i .ob) a) (i .section)))
λ f → ua→ λ { ((a , b) , p) → path→ua-pathp _ (lemma x _ ∙ lemma' _ _ _) }
where abstract
lemma'
: ∀ {o o'} {sect : P ʻ o .ob}
(f : Hom (∫ C P ^op) o o')
(b : x ʻ elem (o .ob) sect)
(p : sect ≡ o .section)
→ x .F₁ (elem-hom (f .hom) (ap (P.₁ (f .hom)) p ∙ f .commute)) b
≡ x .F₁ f (subst (λ e → x ʻ elem (o .ob) e) p b)
lemma' {o = o} {o' = o'} f b p =
J (λ _ p → ∀ f b → x .F₁ (elem-hom (f .hom) (ap (P.₁ (f .hom)) p ∙ f .commute)) b
≡ x .F₁ f (subst (λ e → x ʻ elem (o .ob) e) p b))
(λ f b → ap₂ (x .F₁) (ext refl) (sym (transport-refl b)))
p f b
isom .linv x =
/-Obj-path
(Functor-path (λ x → n-ua (Total-equiv _ e⁻¹))
λ f → ua→ λ a → path→ua-pathp _ refl)
(Nat-pathp _ _ (λ x → ua→ (λ x → sym (x .snd .snd))))
-- downgrade to an equivalence for continuity/cocontinuity
slice→total-is-equiv : is-equivalence slice→total
slice→total-is-equiv = is-precat-iso→is-equivalence slice→total-is-iso
total→slice : Functor Cat[ (∫ C P) ^op , Sets κ ] (Slice Cat[ C ^op , Sets κ ] P)
total→slice = slice→total-is-equiv .is-equivalence.F⁻¹