module Cat.Functor.Naturality whereWorking with natural transformations🔗
Working with natural transformations can often be more cumbersome than working directly with the underlying families of morphisms; moreover, we often have to convert between a property of natural transformations and a (universally quantified) property of the underlying morphisms. This module collects some notation that will help us with that task.
module _ {o ℓ o' ℓ'} {C : Precategory o ℓ} {D : Precategory o' ℓ'} where
private
module CD = Cat.Reasoning Cat[ C , D ]
module D = Cat.Reasoning D
module C = Cat.Reasoning C
open Functor
open _=>_We’ll refer to the natural-transformation versions of predicates on
morphisms by a superscript ⁿ. A natural
isomorphism is simply an isomorphism in a functor category.
Inversesⁿ : {F G : Functor C D} → F => G → G => F → Type _
Inversesⁿ = CD.Inverses
is-invertibleⁿ : {F G : Functor C D} → F => G → Type _
is-invertibleⁿ = CD.is-invertible
_≅ⁿ_ : Functor C D → Functor C D → Type _
F ≅ⁿ G = CD.Isomorphism F G module Inversesⁿ {F G : Functor C D} {α : F => G} {β : G => F} (inv : Inversesⁿ α β) =
CD.Inverses inv
module is-invertibleⁿ {F G : Functor C D} {α : F => G} (inv : is-invertibleⁿ α) =
CD.is-invertible inv
module Isoⁿ {F G : Functor C D} (eta : F ≅ⁿ G) = CD._≅_ eta
idni : ∀ {F} → F ≅ⁿ F
idni = CD.id-iso
_∘ni_ : ∀ {F G H} → G ≅ⁿ H → F ≅ⁿ G → F ≅ⁿ H
_∘ni_ = CD._∘Iso_
_∙ni_ : ∀ {F G H} → F ≅ⁿ G → G ≅ⁿ H → F ≅ⁿ H
f ∙ni g = g ∘ni f
_ni⁻¹ : ∀ {F G} → F ≅ⁿ G → G ≅ⁿ F
_ni⁻¹ = CD._Iso⁻¹
infixr 30 _∘ni_ _∙ni_
infix 31 _ni⁻¹
≅ⁿ-pathp : ∀ {a c b d : Functor C D} (p : a ≡ c) (q : b ≡ d) {f : a ≅ⁿ b} {g : c ≅ⁿ d}
→ (∀ x → PathP (λ i → D.Hom (p i .F₀ x) (q i .F₀ x)) (Isoⁿ.to f .η x) (Isoⁿ.to g .η x))
→ PathP (λ i → p i CD.≅ q i) f g
≅ⁿ-pathp p q r = CD.≅-pathp p q (Nat-pathp p q r)A fundamental lemma that will let us work with natural isomorphisms more conveniently is the following: if is a natural transformation which is componentwise inverted by then is itself a natural transformation This means that, when constructing a natural isomorphism from scratch, we only have to establish naturality in one direction, rather than both.
inverse-is-natural
: ∀ {F G : Functor C D} (α : F => G) (β : ∀ x → D.Hom (G .F₀ x) (F .F₀ x) )
→ (∀ x → α .η x D.∘ β x ≡ D.id)
→ (∀ x → β x D.∘ α .η x ≡ D.id)
→ is-natural-transformation G F β
inverse-is-natural {F = F} {G = G} α β invl invr x y f =
β y D.∘ G .F₁ f ≡⟨ D.refl⟩∘⟨ D.intror (invl x) ⟩
β y D.∘ G .F₁ f D.∘ α .η x D.∘ β x ≡⟨ D.refl⟩∘⟨ D.extendl (sym (α .is-natural x y f)) ⟩
β y D.∘ α .η y D.∘ F .F₁ f D.∘ β x ≡⟨ D.cancell (invr y) ⟩
F .F₁ f D.∘ β x ∎We can then create a natural isomorphism from the following data:
record make-natural-iso (F G : Functor C D) : Type (o ⊔ ℓ ⊔ ℓ') where
no-eta-equality
field
eta : ∀ x → D.Hom (F .F₀ x) (G .F₀ x)
inv : ∀ x → D.Hom (G .F₀ x) (F .F₀ x)
eta∘inv : ∀ x → eta x D.∘ inv x ≡ D.id
inv∘eta : ∀ x → inv x D.∘ eta x ≡ D.id
natural : ∀ x y f → G .F₁ f D.∘ eta x ≡ eta y D.∘ F .F₁ f
open make-natural-iso
to-natural-iso : ∀ {F G} → make-natural-iso F G → F ≅ⁿ G
{-# INLINE to-natural-iso #-}
to-natural-iso {F = F} {G = G} mk =
let to = record { η = mk .eta ; is-natural = λ x y f → sym (mk .natural x y f) } in
record
{ to = to
; from = record
{ η = mk .inv
; is-natural = inverse-is-natural {F} {G} to (mk .inv) (mk .eta∘inv) (mk .inv∘eta) }
; inverses = record
{ invl = ext (mk .eta∘inv)
; invr = ext (mk .inv∘eta) } }Moreover, the following family of functions project out the componentwise invertibility, resp. componentwise isomorphism, associated to an invertible natural transformation, resp. natural isomorphism.
is-invertibleⁿ→is-invertible
: ∀ {F G} {α : F => G}
→ is-invertibleⁿ α
→ ∀ x → D.is-invertible (α .η x)
is-invertibleⁿ→is-invertible inv x =
D.make-invertible
(CD.is-invertible.inv inv .η x)
(CD.is-invertible.invl inv ηₚ x)
(CD.is-invertible.invr inv ηₚ x)
isoⁿ→iso
: ∀ {F G} → F ≅ⁿ G
→ ∀ x → F .F₀ x D.≅ G .F₀ x
isoⁿ→iso α x =
D.make-iso (α.to .η x) (α.from .η x) (α.invl ηₚ x) (α.invr ηₚ x)
where module α = Isoⁿ α
iso→isoⁿ
: ∀ {F G}
→ (is : ∀ x → F .F₀ x D.≅ G .F₀ x)
→ (∀ {x y} f → G .F₁ f D.∘ is x .D.to ≡ is y .D.to D.∘ F .F₁ f)
→ F ≅ⁿ G
iso→isoⁿ {F} {G} is nat = to-natural-iso mk where
mk : make-natural-iso F G
mk .eta x = is x .D.to
mk .inv x = is x .D.from
mk .eta∘inv x = is x .D.invl
mk .inv∘eta x = is x .D.invr
mk .natural _ _ = nat
is-invertibleⁿ→isoⁿ : ∀ {F G} {α : F => G} → is-invertibleⁿ α → F ≅ⁿ G
is-invertibleⁿ→isoⁿ nat-inv = CD.invertible→iso _ nat-inv
isoⁿ→is-invertible
: ∀ {F G} (α : F ≅ⁿ G)
→ ∀ x → D.is-invertible (α .Isoⁿ.to .η x)
isoⁿ→is-invertible α x = D.iso→invertible (isoⁿ→iso α x) to-inversesⁿ
: {F G : Functor C D} {α : F => G} {β : G => F}
→ (∀ x → α .η x D.∘ β .η x ≡ D.id)
→ (∀ x → β .η x D.∘ α .η x ≡ D.id)
→ Inversesⁿ α β
to-inversesⁿ p q = CD.make-inverses (ext p) (ext q)
to-is-invertibleⁿ
: {F G : Functor C D} {α : F => G}
→ (β : G => F)
→ (∀ x → α .η x D.∘ β .η x ≡ D.id)
→ (∀ x → β .η x D.∘ α .η x ≡ D.id)
→ is-invertibleⁿ α
to-is-invertibleⁿ β p q = CD.make-invertible β (ext p) (ext q)
inversesⁿ→inverses
: ∀ {F G} {α : F => G} {β : G => F}
→ Inversesⁿ α β
→ ∀ x → D.Inverses (α .η x) (β .η x)
inversesⁿ→inverses inv x =
D.make-inverses
(CD.Inverses.invl inv ηₚ x)
(CD.Inverses.invr inv ηₚ x)
isoⁿ→is-invertibleⁿ : ∀ {F G : Functor C D} (i : F ≅ⁿ G) → is-invertibleⁿ (Isoⁿ.to i)
isoⁿ→is-invertibleⁿ i = CD.iso→invertible i
invertible→invertibleⁿ
: ∀ {F G} (eta : F => G)
→ (∀ x → D.is-invertible (eta .η x))
→ is-invertibleⁿ eta
invertible→invertibleⁿ eta i = to-is-invertibleⁿ ate (λ x → D.is-invertible.invl (i x)) λ x → D.is-invertible.invr (i x) where
ate : _ => _
ate .η x = D.is-invertible.inv (i x)
ate .is-natural = inverse-is-natural eta _ (λ x → D.is-invertible.invl (i x)) (λ x → D.is-invertible.invr (i x))
push-eqⁿ : ∀ {F G} (α : F ≅ⁿ G) {a b} {f g : C.Hom a b} → F .F₁ f ≡ F .F₁ g → G .F₁ f ≡ G .F₁ g
push-eqⁿ {F = F} {G = G} α {f = f} {g} p =
G .F₁ f ≡⟨ D.insertl (α .Isoⁿ.invl ηₚ _) ⟩
α .Isoⁿ.to .η _ D.∘ α .Isoⁿ.from .η _ D.∘ G .F₁ f ≡⟨ D.refl⟩∘⟨ α .Isoⁿ.from .is-natural _ _ _ ⟩
α .Isoⁿ.to .η _ D.∘ F .F₁ f D.∘ α .Isoⁿ.from .η _ ≡⟨ D.refl⟩∘⟨ p D.⟩∘⟨refl ⟩
α .Isoⁿ.to .η _ D.∘ F .F₁ g D.∘ α .Isoⁿ.from .η _ ≡˘⟨ D.refl⟩∘⟨ α .Isoⁿ.from .is-natural _ _ _ ⟩
α .Isoⁿ.to .η _ D.∘ α .Isoⁿ.from .η _ D.∘ G .F₁ g ≡⟨ D.cancell (α .Isoⁿ.invl ηₚ _) ⟩
G .F₁ g ∎module _ {o ℓ} {C : Precategory o ℓ} where
private
module C = Cat.Reasoning C
open _=>_
id-nat-commute : ∀ (α β : Id {C = C} => Id) → α ∘nt β ≡ β ∘nt α
id-nat-commute α β = ext λ x → α .is-natural _ _ _