module Algebra.Group.Cat.FinitelyComplete {ℓ} whereopen is-group-hom
open Group-on
open Groups._↪_
private variable
G H K : Group ℓFinite limits of groups🔗
We present explicit computations of finite limits in the category of groups, though do note that the terminal group is also initial (i.e. it is a zero object). Knowing that the category of groups admits a right adjoint functor into the category of sets (the underlying set functor) drives us in computing limits of groups as limits of sets, and equipping those with a group structure: we are forced to do this since right adjoints preserve limits.
The zero group🔗
The zero object in the category of groups is given by the unit type, equipped with its unique group structure. Correspondingly, we may refer to this group in prose either as or as
Zero-group : ∀ {ℓ} → Group ℓ
Zero-group = to-group zg where
zg : make-group (Lift _ ⊤)
zg .make-group.group-is-set x y p q i j = lift tt
zg .make-group.unit = lift tt
zg .make-group.mul = λ x y → lift tt
zg .make-group.inv x = lift tt
zg .make-group.assoc x y z = refl
zg .make-group.invl x = refl
zg .make-group.idl x = refl
Zero-group-is-initial : is-initial (Groups ℓ) Zero-group
Zero-group-is-initial (_ , G) .centre = ∫hom (λ x → G.unit) gh where
module G = Group-on G
gh : is-group-hom _ _ (λ x → G.unit)
gh .pres-⋆ x y =
G.unit ≡˘⟨ G.idl ⟩
G.unit G.⋆ G.unit ∎
Zero-group-is-initial (_ , G) .paths x =
ext λ _ → sym (is-group-hom.pres-id (x .snd))
Zero-group-is-terminal : is-terminal (Groups ℓ) Zero-group
Zero-group-is-terminal _ .centre =
∫hom (λ _ → lift tt) record { pres-⋆ = λ _ _ _ → lift tt }
Zero-group-is-terminal _ .paths x = trivial!
Zero-group-is-zero : is-zero (Groups ℓ) Zero-group
Zero-group-is-zero = record
{ has-is-initial = Zero-group-is-initial
; has-is-terminal = Zero-group-is-terminal
}
∅ᴳ : Zero (Groups ℓ)
∅ᴳ .Zero.∅ = Zero-group
∅ᴳ .Zero.has-is-zero = Zero-group-is-zeroDirect products🔗
We compute the product of two groups as the product of their underlying sets, equipped with the operation of “pointwise addition”.
Direct-product : Group ℓ → Group ℓ → Group ℓ
Direct-product (G , Gg) (H , Hg) = to-group G×Hg where
module G = Group-on Gg
module H = Group-on Hg
G×Hg : make-group (∣ G ∣ × ∣ H ∣)
G×Hg .make-group.group-is-set = hlevel 2
G×Hg .make-group.unit = G.unit , H.unit
G×Hg .make-group.mul (a , x) (b , y) = a G.⋆ b , x H.⋆ y
G×Hg .make-group.inv (a , x) = a G.⁻¹ , x H.⁻¹
G×Hg .make-group.assoc x y z = ap₂ _,_ G.associative H.associative
G×Hg .make-group.invl x = ap₂ _,_ G.inversel H.inversel
G×Hg .make-group.idl x = ap₂ _,_ G.idl H.idlThe projection maps and universal factoring are all given exactly as for the category of sets.
proj₁ : Groups.Hom (Direct-product G H) G
proj₁ .fst = fst
proj₁ .snd .pres-⋆ x y = refl
proj₂ : Groups.Hom (Direct-product G H) H
proj₂ .fst = snd
proj₂ .snd .pres-⋆ x y = refl
factor : Groups.Hom G H → Groups.Hom G K → Groups.Hom G (Direct-product H K)
factor f g .fst x = f · x , g · x
factor f g .snd .pres-⋆ x y = ap₂ _,_ (f .snd .pres-⋆ _ _) (g .snd .pres-⋆ _ _)
Direct-product-is-product : is-product (Groups ℓ) {G} {H} proj₁ proj₂
Direct-product-is-product {G} {H} = p where
open is-product
p : is-product _ _ _
p .⟨_,_⟩ = factor
p .π₁∘⟨⟩ = Grp↪Sets-is-faithful refl
p .π₂∘⟨⟩ = Grp↪Sets-is-faithful refl
p .unique p q = Grp↪Sets-is-faithful (funext λ x →
ap₂ _,_ (happly (ap fst p) x) (happly (ap fst q) x))What sets the direct product of groups apart from (e.g.) the cartesian product of sets is that both “factors” embed into the direct product, by taking the identity as the other coordinate: Indeed, in the category of abelian groups, the direct product is also a coproduct.
inj₁ : G Groups.↪ Direct-product G H
inj₁ {G} {H} .mor .fst x = x , H .snd .unit
inj₁ {G} {H} .mor .snd .pres-⋆ x y = ap (_ ,_) (sym (H .snd .idl))
inj₁ {G} {H} .monic g h x = Grp↪Sets-is-faithful (funext λ e i → (x i · e) .fst)
inj₂ : H Groups.↪ Direct-product G H
inj₂ {H} {G} .mor .fst x = G .snd .unit , x
inj₂ {H} {G} .mor .snd .pres-⋆ x y = ap (_, _) (sym (G .snd .idl))
inj₂ {H} {G} .monic g h x = Grp↪Sets-is-faithful (funext λ e i → (x i · e) .snd)Equalisers🔗
open import Cat.Diagram.EqualiserThe equaliser of two group homomorphisms
is given by their equaliser as Set-morphisms, equipped with the evident
group structure. Indeed, we go ahead and compute the actual Equaliser in sets, and re-use all of its
infrastructure to make an equaliser in Groups.
module _ {G H : Group ℓ} (f g : Groups.Hom G H) where
private
module G = Group-on (G .snd)
module H = Group-on (H .snd)
module f = is-group-hom (f .snd)
module g = is-group-hom (g .snd)
module seq = Equaliser
(SL.Sets-equalisers
{A = G.underlying-set}
{B = H.underlying-set}
(f .fst) (g .fst))Recall that points there are elements of the domain (here, a point together with a proof that To “lift” the group structure from to we must prove that, if and then But this follows from and being group homomorphisms:
Equaliser-group : Group ℓ
Equaliser-group = to-group equ-group where
equ-⋆ : ∣ seq.apex ∣ → ∣ seq.apex ∣ → ∣ seq.apex ∣
equ-⋆ (a , p) (b , q) = (a G.⋆ b) , r where abstract
r : f · (G .snd ._⋆_ a b) ≡ g · (G .snd ._⋆_ a b)
r = f.pres-⋆ a b ∙∙ ap₂ H._⋆_ p q ∙∙ sym (g.pres-⋆ _ _)
equ-inv : ∣ seq.apex ∣ → ∣ seq.apex ∣
equ-inv (x , p) = x G.⁻¹ , q where abstract
q : f · (G.inverse x) ≡ g · (G.inverse x)
q = f.pres-inv ∙∙ ap H._⁻¹ p ∙∙ sym g.pres-inv
abstract
invs : f · G.unit ≡ g · G.unit
invs = f.pres-id ∙ sym g.pres-idSimilar yoga must be done for the inverse maps and the group unit.
equ-group : make-group ∣ seq.apex ∣
equ-group .make-group.group-is-set = seq.apex .is-tr
equ-group .make-group.unit = G.unit , invs
equ-group .make-group.mul = equ-⋆
equ-group .make-group.inv = equ-inv
equ-group .make-group.assoc x y z = Σ-prop-path! G.associative
equ-group .make-group.invl x = Σ-prop-path! G.inversel
equ-group .make-group.idl x = Σ-prop-path! G.idl
open is-equaliser
open EqualiserWe can then, pretty effortlessly, prove that the Equaliser-group, together with the
canonical injection
equalise the group homomorphisms
and
Groups-equalisers : Equaliser (Groups ℓ) f g
Groups-equalisers .apex = Equaliser-group
Groups-equalisers .equ = ∫hom fst record { pres-⋆ = λ x y → refl }
Groups-equalisers .has-is-eq .equal = Grp↪Sets-is-faithful seq.equal
Groups-equalisers .has-is-eq .universal {F = F} {e'} p = ∫hom go lim-gh where
go = seq.universal {F = underlying-set (F .snd)} (ap fst p)
lim-gh : is-group-hom _ _ go
lim-gh .pres-⋆ x y = Σ-prop-path! (e' .snd .pres-⋆ _ _)
Groups-equalisers .has-is-eq .factors {F = F} {p = p} = Grp↪Sets-is-faithful
(seq.factors {F = underlying-set (F .snd)} {p = ap fst p})
Groups-equalisers .has-is-eq .unique {F = F} {p = p} q = Grp↪Sets-is-faithful
(seq.unique {F = underlying-set (F .snd)} {p = ap fst p} (ap fst q))Putting all of these constructions together, we get the proof that
Groups is finitely complete, since we can compute pullbacks
as certain equalisers.
open import Cat.Diagram.Limit.Finite
Groups-finitely-complete : Finitely-complete (Groups ℓ)
Groups-finitely-complete = with-equalisers (Groups ℓ) top prod Groups-equalisers
where
top : Terminal (Groups ℓ)
top .Terminal.top = Zero-group
top .Terminal.has⊤ = Zero-group-is-terminal
prod : ∀ A B → Product (Groups ℓ) A B
prod A B .Product.apex = Direct-product A B
prod A B .Product.π₁ = proj₁
prod A B .Product.π₂ = proj₂
prod A B .Product.has-is-product = Direct-product-is-product