module Order.Instances.Rational where
private module P = Poset
The usual ordering on the rationals🔗
: Poset lzero lzero
Ratio-poset .P.Ob = Ratio
Ratio-poset .P._≤_ = _≤_
Ratio-poset .P.≤-thin = hlevel 1
Ratio-poset .P.≤-refl = ≤-refl
Ratio-poset .P.≤-trans = ≤-trans
Ratio-poset .P.≤-antisym = ≤-antisym
Ratio-poset
: is-decidable-total-order Ratio-poset
Ratio-is-dec-total = from-weakly-total (≤-is-weakly-total _ _) Ratio-is-dec-total