Comonadic adjunctions🔗
An adjunction
between functors
and
is comonadic if the induced comparison functor
(where the right-hand side is the category of Coalgebras
of the comonad of the
adjunction) is an equivalence of categories. This dualises the
theory of monadic adjunctions.
module
.Functor.Adjoint.Comonadic
Cat{o₁ h₁ o₂ h₂ : _}
{C : Precategory o₁ h₁}
{D : Precategory o₂ h₂}
{L : Functor C D} {R : Functor D C}
(L⊣R : L ⊣ R)
where
private
module C = Cat.Reasoning C
module D = Cat.Reasoning D
module L = Cat.Functor.Reasoning L
module R = Cat.Functor.Reasoning R
module adj = _⊣_ L⊣R
: Comonad-on _
L∘R = Adjunction→Comonad L⊣R
L∘R
open Comonad-on L∘R
_ = Coalgebra
The composition of L.₁
with the
adjunction unit
natural transformation
gives L
a Coalgebra
structure, thus extending
L
to a functor
: Functor C (Coalgebras L∘R)
Comparison-CoEM .F₀ x = L.₀ x , alg where
Comparison-CoEM : Coalgebra-on L∘R (L.₀ x)
alg .Coalgebra-on.ρ = L.₁ (adj.unit.η _)
alg .Coalgebra-on.ρ-counit = adj.zig
alg .Coalgebra-on.ρ-comult = L.weave (sym (adj.unit.is-natural _ _ _)) alg
Construction of the functorial action of Comparison-CoEM
.F₁ x .hom = L.₁ x
Comparison-CoEM .F₁ x .preserves = L.weave (sym (adj.unit.is-natural _ _ _))
Comparison-CoEM .F-id = ext L.F-id
Comparison-CoEM .F-∘ f g = ext (L.F-∘ _ _) Comparison-CoEM
An adjunction is comonadic if Comparison-CoEM
is an equivalence of categories, thus
exhibiting
as the category of
: Type _
is-comonadic = is-equivalence Comparison-CoEM is-comonadic