module Cat.Displayed.Functor where
Displayed and fibred functorsπ
If you have a pair of categories displayed over a common base category it makes immediate sense to talk about functors youβd have an assignment of objects and an assignment of morphisms
which makes sense because lies over just as did, that a morphism is allowed to lie over a morphism But, in the spirit of relativising category theory, it makes more sense to consider functors between categories displayed over different bases, as in
with our displayed functor lying over an ordinary functor to mediate between the bases.
module
_ {oa βa ob βb oe βe of βf}
{A : Precategory oa βa}
{B : Precategory ob βb}
(F : Functor A B)
(β° : Displayed A oe βe)
(β± : Displayed B of βf)
where
private
module F = FR F
module A = CR A
module B = CR B
module β° where
open Displayed β° public
open DR β° public
module β± where
open Displayed β± public
open DR β± public
record Displayed-functor : Type (oa β βa β oe β βe β of β βf) where
no-eta-equality
field
: β {x} (x' : β°.Ob[ x ]) β β±.Ob[ F.β x ]
Fβ'
Fβ': β {a b} {f : A.Hom a b} {a' b'}
β β°.Hom[ f ] a' b' β β±.Hom[ F.β f ] (Fβ' a') (Fβ' b')
In order to state the displayed functoriality laws, we require functoriality for our mediating functor Functors between categories displayed over the same base can be recovered as the βvertical displayed functorsβ, i.e., those lying over the identity functor.
F-id': β {x} {x' : β°.Ob[ x ]}
β Fβ' (β°.id' {x} {x'}) β±.β‘[ F.F-id ] (β±.id' {F.β x} {Fβ' x'})
F-β': β {a b c} {f : A.Hom b c} {g : A.Hom a b} {a' b' c'}
β {f' : β°.Hom[ f ] b' c'} {g' : β°.Hom[ g ] a' b'}
β Fβ' (f' β°.β' g') β±.β‘[ F.F-β f g ] (Fβ' f' β±.β' Fβ' g')
= Fβ'
β' = Fβ' β'
module
_ {oa βa ob βb oe βe of βf}
{A : Precategory oa βa}
{B : Precategory ob βb}
{β° : Displayed A oe βe}
{β± : Displayed B of βf}
where
private
module A = Precategory A
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
open Functor
open Displayed-functor
private unquoteDecl eqv = declare-record-iso eqv (quote Displayed-functor)
Displayed-functor-pathp: {F G : Functor A B}
β {F' : Displayed-functor F β° β±} {G' : Displayed-functor G β° β±}
β (p : F β‘ G)
β (q0 : β {x} β (x' : β°.Ob[ x ]) β PathP (Ξ» i β β±.Ob[ p i .Fβ x ]) (F' .Fβ' x') (G' .Fβ' x'))
β (q1 : β {x y x' y'} {f : A.Hom x y} β (f' : β°.Hom[ f ] x' y')
β PathP (Ξ» i β β±.Hom[ p i .Fβ f ] (q0 x' i) (q0 y' i)) (F' .Fβ' f') (G' .Fβ' f'))
β PathP (Ξ» i β Displayed-functor (p i) β° β±) F' G'
{F = F} {G = G} {F' = F'} {G' = G'} p q0 q1 =
Displayed-functor-pathp (Ξ» _ β eqv) ((Ξ» i x' β q0 x' i) ,β (Ξ» i f' β q1 f' i) ,β prop!) injectiveP
Note that, if and are fibred categories over their bases (rather than just displayed categories), then the appropriate notion of 1-cell are displayed functors that take cartesian morphisms to cartesian morphisms.
module
_ {oa βa ob βb oe βe of βf}
{A : Precategory oa βa}
{B : Precategory ob βb}
{β° : Displayed A oe βe}
{β± : Displayed B of βf}
{F : Functor A B}
where
private
module F = Functor F
module A = CR A
module B = CR B
module β° where
open Displayed β° public
open Cat.Displayed.Cartesian β° public
module β± where
open Displayed β± public
open Cat.Displayed.Cartesian β± public
: Level
lvl = oa β βa β ob β βb β oe β βe β of β βf lvl
record is-fibred-functor (F' : Displayed-functor F β° β±) : Type lvl where
no-eta-equality
open Displayed-functor F'
field
F-cartesian: β {a b a' b'} {f : A.Hom a b} {f' : β°.Hom[ f ] a' b'}
β β°.is-cartesian f f'
β β±.is-cartesian (F.β f) (Fβ' f')
instance
H-Level-is-fibred-functor: β {F' : Displayed-functor F β° β±}
β {n : Nat}
β H-Level (is-fibred-functor F') (suc n)
{n = n} =
H-Level-is-fibred-functor (Isoβis-hlevel (suc n) eqv (hlevel (suc n)))
hlevel-instance where
private unquoteDecl eqv = declare-record-iso eqv (quote is-fibred-functor)
open β± -- Needed for the is-cartesian H-Level instances.
One can also define the composition of displayed functors, which lies over the composition of the underlying functors.
module
_ {oa βa ob βb oc βc oe βe of βf oh βh}
{A : Precategory oa βa}
{B : Precategory ob βb}
{C : Precategory oc βc}
{β° : Displayed A oe βe}
{β± : Displayed B of βf}
{β : Displayed C oh βh}
{F : Functor B C} {G : Functor A B}
where
private
module A = Precategory A
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
module β where
open Displayed β public
open DR β public
module F = Functor F
module G = Functor G
open DR β
open Displayed-functor
open is-fibred-functor
infixr 30 _Fβ'_
_Fβ'_
: Displayed-functor F β± β
β Displayed-functor G β° β±
β Displayed-functor (F Fβ G) β° β
(F' Fβ' G') .Fβ' x = F' .Fβ' (G' .Fβ' x)
(F' Fβ' G') .Fβ' f = F' .Fβ' (G' .Fβ' f)
(F' Fβ' G') .F-id' =
.cast[] $
β.Fβ' (G' .Fβ' β°.id') β.β‘[]β¨ apd (Ξ» i β F' .Fβ') (G' .F-id') β©
F' .Fβ' β±.id' β.β‘[]β¨ F' .F-id' β©
F' .id' β
β(F' Fβ' G') .F-β' {f = f} {g = g} {f' = f'} {g' = g'} =
.cast[] $
β.Fβ' (G' .Fβ' (f' β°.β' g')) β.β‘[]β¨ apd (Ξ» i β F' .Fβ') (G' .F-β') β©
F' (G' .Fβ' f' β±.β' G' .Fβ' g') β.β‘[]β¨ F' .F-β' β©
Fβ' F' (F' .Fβ' (G' .Fβ' f') β.β' F' .Fβ' (G' .Fβ' g')) β
The composite of two fibred functors is a fibred functor.
Fβ'-fibred: β {F' : Displayed-functor F β± β} {G' : Displayed-functor G β° β±}
β is-fibred-functor F' β is-fibred-functor G'
β is-fibred-functor (F' Fβ' G')
.F-cartesian f'-cart =
Fβ'-fibred F'-fibred G'-fibred .F-cartesian (G'-fibred .F-cartesian f'-cart) F'-fibred
Furthermore, there is a displayed identity functor that lies over the identity functor.
module _
{ob βb oe βe}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
where
open Displayed-functor
open is-fibred-functor
: Displayed-functor Id β° β°
Id' .Fβ' x = x
Id' .Fβ' f = f
Id' .F-id' = refl
Id' .F-β' = refl Id'
The identity functor is obviously fibred.
: is-fibred-functor Id'
Id'-fibred .F-cartesian f'-cart = f'-cart Id'-fibred
Vertical functorsπ
Functors displayed over the identity functor are of particular interest. Such functors are known as vertical functors, and are commonly used to define fibrewise structure. However, they are somewhat difficult to work with if we define them directly as such, as the composite of two identity functors is not definitionally equal to the identity functor! To avoid this problem, we provide the following specialized definition.
module
_ {o β o' β' o'' β''}
{B : Precategory o β}
(β° : Displayed B o' β')
(β± : Displayed B o'' β'')
where
private
module B = Precategory B
module β° = Displayed β°
module β± = Displayed β±
module F = DR β± using (hom[])
module β°β {x} = Precategory (Fibre β° x) using (_β_)
module β±β {x} = Precategory (Fibre β± x) using (_β_)
: Type (o β β β o' β β' β o'' β β'')
Vertical-functor = Displayed-functor Id β° β± Vertical-functor
As promised, composition of vertical functors is much simpler.
module _
{ob βb oe βe of βf oh βh}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
{β± : Displayed B of βf}
{β : Displayed B oh βh}
where
open Displayed-functor
open is-fibred-functor
infixr 30 _βV_
_βV_ : Vertical-functor β± β β Vertical-functor β° β± β Vertical-functor β° β
(F' βV G') .Fβ' x' = F' .Fβ' (G' .Fβ' x')
(F' βV G') .Fβ' f' = F' .Fβ' (G' .Fβ' f')
(F' βV G') .F-id' = ap (F' .Fβ') (G' .F-id') β F' .F-id'
(F' βV G') .F-β' = ap (F' .Fβ') (G' .F-β') β (F' .F-β')
General and vertical composition of vertical functors definitionnally agree on both the actions on objects and morphisms: the only difference is in how the result is indexed.
Fβ'-βV-pathp: β {F' : Vertical-functor β± β} {G' : Vertical-functor β° β±}
β PathP (Ξ» i β Displayed-functor (Fβ-id2 i) β° β) (F' Fβ' G') (F' βV G')
=
Fβ'-βV-pathp (Ξ» i β Fβ-id2 i)
Displayed-functor-pathp (Ξ» x' β refl)
(Ξ» f' β refl)
As such, the composite of vertical fibred functors is also fibred.
βV-fibred: β {F' : Vertical-functor β± β} {G' : Vertical-functor β° β±}
β is-fibred-functor F' β is-fibred-functor G' β is-fibred-functor (F' βV G')
.F-cartesian cart =
βV-fibred F'-fib G'-fib .F-cartesian (G'-fib .F-cartesian cart) F'-fib
module
_ {o β o' β' o'' β''}
{B : Precategory o β}
{β° : Displayed B o' β'}
{β± : Displayed B o'' β''}
where
private
module B = Precategory B
module β° where
open Displayed β° public
open DR β° public
module β± where
open Displayed β± public
open DR β± public
module β°β {x} = Precategory (Fibre β° x) using (_β_)
module β±β {x} = Precategory (Fibre β± x) using (_β_)
module Vertical-functor (F : Vertical-functor β° β±) where
open Displayed-functor F public
abstract
F-ββ: β {x} {a b c : β°.Ob[ x ]} {f : β°.Hom[ B.id ] b c} {g : β°.Hom[ B.id ] a b}
β Fβ' (f β°β.β g) β‘ Fβ' f β±β.β Fβ' g
= β±.cast[] (apd (Ξ» i β Fβ') (β°.unwrap _) β±.β[] F-β' β±.β[] β±.wrap _)
F-ββ
open Vertical-functor
Vertical-functor-path: {F G : Vertical-functor β° β±}
β (p0 : β {x} β (x' : β°.Ob[ x ]) β F .Fβ' x' β‘ G .Fβ' x')
β (p1 : β {x y x' y'} {f : B.Hom x y} β (f' : β°.Hom[ f ] x' y')
β PathP (Ξ» i β β±.Hom[ f ] (p0 x' i) (p0 y' i)) (F .Fβ' f') (G .Fβ' f'))
β F β‘ G
= Displayed-functor-pathp refl Vertical-functor-path
Displayed natural transformationsπ
Just like we have defined a displayed functor lying over an ordinary functor we can define a displayed natural transformation. Assume are displayed functors over resp. and we have a natural transformation Than one can define a displayed natural transformation lying over
module
_ {o β o' β' oβ ββ oβ' ββ'}
{A : Precategory o β}
{B : Precategory oβ ββ}
{β° : Displayed A o' β'}
{β± : Displayed B oβ' ββ'}
where
private
module A = CR A
module β° = Displayed β°
module β± = Displayed β±
module β°β {x} = Precategory (Fibre β° x) using (_β_)
module β±β {x} = Precategory (Fibre β± x) using (_β_)
open Displayed-functor
open _=>_
: Level
lvl = o β o' β β β β' β ββ'
lvl infix 20 _=[_]=>_
record _=[_]=>_
{F : Functor A B} {G : Functor A B}
(F' : Displayed-functor F β° β±)
(Ξ± : F => G)
(G' : Displayed-functor G β° β±)
: Type lvl
where
no-eta-equality
field
: β {x} (x' : β°.Ob[ x ]) β β±.Hom[ Ξ± .Ξ· x ] (F' .Fβ' x') (G' .Fβ' x')
Ξ·'
is-natural': β {x y f} (x' : β°.Ob[ x ]) (y' : β°.Ob[ y ]) (f' : β°.Hom[ f ] x' y')
β Ξ·' y' β±.β' F' .Fβ' f' β±.β‘[ Ξ± .is-natural x y f ] G' .Fβ' f' β±.β' Ξ·' x'
Let be two vertical functors. A displayed natural transformation between and is called a vertical natural transformation if all components of the natural transformation are vertical.
module _
{ob βb oe βe of βf}
{B : Precategory ob βb}
{β° : Displayed B oe βe}
{β± : Displayed B of βf}
where
private
open CR B
module β° = Displayed β°
module β± where
open Displayed β± public
open DR β± public
module β±β {x} = CR (Fibre β± x)
open Displayed-functor
infix 20 _=>β_
_=>β_ : Vertical-functor β° β± β Vertical-functor β° β± β Type _
= F' =[ idnt ]=> G' F' =>β G'
module _=>β_ {F' G' : Vertical-functor β° β±} (Ξ± : F' =>β G') where
open _=[_]=>_ Ξ± public
abstract
is-naturalβ: β {x} (x' y' : β°.Ob[ x ]) (f' : β°.Hom[ id ] x' y')
β Ξ·' y' β±β.β F' .Fβ' f' β‘ G' .Fβ' f' β±β.β Ξ·' x'
=
is-naturalβ x y f .hom[] (from-pathpβ» (is-natural' x y f))
ap β±(β±.duplicate _ _ _)
β sym
private unquoteDecl eqv = declare-record-iso eqv (quote _=[_]=>_)
instance
Extensional-=>β: β {βr F' G'}
β β¦ _ : Extensional (β {x} (x' : β°.Ob[ x ]) β β±.Hom[ id ] (F' .Fβ' x') (G' .Fβ' x')) βr β¦
β Extensional (F' =>β G') βr
{F' = F'} {G' = G'} β¦ e β¦ = injectionβextensional! {f = _=>β_.Ξ·'}
Extensional-=>β (Ξ» p β Iso.injective eqv (Ξ£-prop-path! p)) e
: β {F' G'} {n} β H-Level (F' =>β G') (2 + n)
H-Level-=>β = basic-instance 2 (Isoβis-hlevel 2 eqv (hlevel 2))
H-Level-=>β
open _=>β_
: β {F} β F =>β F
idntβ .Ξ·' x' = β±.id'
idntβ .is-natural' x' y' f' = to-pathp (DR.id-comm[] β±)
idntβ
_βntβ_ : β {F G H} β G =>β H β F =>β G β F =>β H
(f βntβ g) .Ξ·' x' = f .Ξ·' _ β±β.β g .Ξ·' x'
_βntβ_ {F = F} {G = G} {H = H} f g .is-natural' {f = b} x' y' f' =
let open DR β± using (hom[] ; whisker-l ; duplicate ; pullr' ; extendl' ; unwhisker-r) in to-pathp (
(whisker-l (idl id))
ap hom[] (duplicate (ap (_β b) (idl id) β id-comm-sym) _ _)
ββ sym (from-pathpβ» (pullr' id-comm-sym (g .is-natural' _ _ _)
ββ ap hom[] {q = ap (_β b) (idl id) β id-comm-sym β introl refl}))
(duplicate (eliml refl) _ _)
ββ sym (from-pathpβ» (extendl' id-comm-sym (f .is-natural' x' y' f') {q = extendl id-comm-sym}))
ββ ap hom[] (duplicate (ap (b β_) (idl id)) (eliml refl) _)
ββ sym _ _)
ββ unwhisker-r
module _
{ob βb oc βc od βd oe βe}
{B : Precategory ob βb}
{π : Displayed B oc βc}
{π : Displayed B od βd}
{β° : Displayed B oe βe}
{F G : Vertical-functor π β°} {H K : Vertical-functor π π}
(Ξ± : F =>β G) (Ξ² : H =>β K) where
open Displayed-functor
open _=>β_
open CR B
private module E {x} = CR (Fibre β° x) using (_β_)
_ββ_ : (F βV H) =>β (G βV K)
_ββ_ .Ξ·' x' = G .Fβ' (Ξ² .Ξ·' _) E.β Ξ± .Ξ·' _
_ββ_ .is-natural' x' y' f' = to-pathp (
(whisker-l (idl id))
ap hom[] (duplicate (ap (_β _) (idl id) β id-comm-sym) _ _)
ββ sym (from-pathpβ» (pullr' _ (Ξ± .is-natural' _ _ _) {q = pullr id-comm-sym}))
ββ ap hom[] (duplicate (eliml refl) _ _)
ββ sym (from-pathpβ»
ββ ap hom[] (extendl' _ (symP (G .F-β') β[] (apd (Ξ» i β G .Fβ') (Ξ² .is-natural' _ _ _) β[] G .F-β'))
{q = extendl id-comm-sym}))
(duplicate (ap (_ β_) (idl id)) _ _) ββ unwhisker-r _ _)
ββ sym where
open DR β° using (hom[] ; whisker-l ; duplicate ; pullr' ; extendl' ; unwhisker-r)
open Displayed β° using (_β[]_)