module Realisability.Base {βA} (pca@(πΈ , _) : PCA βA) where
open Realisability.PCA.Sugar pca
open Realisability.Data.Pair pca
open Realisability.Data.Sum pca
private variable
: Level
β β' β'' : Type β'
X Y Z : Nat n
Realisability logicπ
record [_]_β’_ (f : X β Y) (P : X β ββΊ πΈ) (Q : Y β ββΊ πΈ) : Type (level-of X β level-of Y β βA) where
field
: β―βΊ πΈ
realiser : β x (a : β― β πΈ β) (ah : a β P x) β realiser β a β Q (f x)
tracks
: β {x} (a : β― β πΈ β) (ah : a β P x) β β realiser β a β
realiserβ = Q _ .defined (tracks _ a ah) realiserβ a ah
private unquoteDecl eqv' = declare-record-iso eqv' (quote [_]_β’_)
open [_]_β’_ hiding (tracks) public
-- Evil hack to change the visibility of the arguments to tracks in
-- RHSes: instead of using the projection from that record we define a
-- new record with the first two arguments made implicit (with the same
-- name), convert the actual record to this new one, and export a copy
-- of the new projection; since this is all done in a module
-- parametrised by a [ f ] P β’ Q, the new definition is basically a
-- projection.
--
-- Since copies of postfix identifiers can be used postfix this works.
module _ {f : X β Y} {P : X β ββΊ πΈ} {Q : Y β ββΊ πΈ} (i : [ f ] P β’ Q) where
private
module i = [_]_β’_ i
record hack : Type (level-of X β level-of Y β βA) where
field
: β {x} {a : β― β πΈ β} (ah : a β P x) β i.realiser β a β Q (f x)
tracks
: hack
from = record { tracks = i.tracks _ _ }
from
open hack from public
instance
: β {V : Type} {P : X β ββΊ πΈ} {Q : Y β ββΊ πΈ} {f : X β Y} β To-term V ([ f ] P β’ Q)
tracks-to-term = record { to = Ξ» x β const (x .realiser) }
tracks-to-term
: β {P : X β ββΊ πΈ} {Q : Y β ββΊ πΈ} {f : X β Y} β To-part ([ f ] P β’ Q) β πΈ β
tracks-to-part = record { to-part = Ξ» x β x .realiser .fst }
tracks-to-part
private
variable P Q R : X β ββΊ πΈ
: (P : ββΊ πΈ) {x y : β― β πΈ β} β x β P β y β‘ x β y β P
subst-β = subst (_β P) (sym p) hx subst-β P hx p
Basic structural rulesπ
: [ id ] P β’ P
idβ’ {P = P} = record where
idβ’ = val β¨ x β© x
realiser
= subst-β (P x) ha (abs-Ξ² _ [] (a , P x .defined ha))
tracks x a ha
_ββ’_ : β {f g} β [ g ] Q β’ R β [ f ] P β’ Q β [ g β f ] P β’ R
_ββ’_ {R = R} {P = P} Ξ± Ξ² = record where
= val β¨ x β© Ξ± `Β· (Ξ² `Β· x)
realiser
= subst-β (R _) (Ξ± .tracks (Ξ² .tracks ha)) $
tracks x a ha (val β¨ x β© Ξ± `Β· (Ξ² `Β· x)) β a β‘β¨ abs-Ξ² _ [] (a , P _ .defined ha) β©
(Ξ² β a) β Ξ± β
Conjunctionπ
_β§T_ : (P Q : X β ββΊ πΈ) β X β ββΊ πΈ
(P β§T Q) x .mem a = elΞ© do
Ξ£[ u β β― β πΈ β ] Ξ£[ v β β― β πΈ β ]
a β‘ `pair β u β v Γ u β P x Γ v β Q x(P β§T Q) x .defined = rec! Ξ» u v Ξ± rx ry β
_β (sym Ξ±) (`pairββ (P _ .defined rx) (Q _ .defined ry))
subst β
: [ id ] (P β§T Q) β’ P
Οββ’ {P = P} {Q = Q} = record where
Οββ’ = `fst
realiser
= elim! Ξ» a p q Ξ± pp qq β subst-β (P _) pp $
tracks x (`fst β_) Ξ± β©
`fst β a β‘β¨ ap (`pair β p β q) β‘β¨ `fst-Ξ² (P _ .defined pp) (Q _ .defined qq) β©
`fst β
p β
: [ id ] (P β§T Q) β’ Q
Οββ’ {P = P} {Q = Q} = record where
Οββ’ = `snd
realiser
= elim! Ξ» a p q Ξ± pp qq β subst-β (Q _) qq $
tracks x (`snd β_) Ξ± β©
`snd β a β‘β¨ ap (`pair β p β q) β‘β¨ `snd-Ξ² (P _ .defined pp) (Q _ .defined qq) β©
`snd β q β