open import Cat.Instances.Functor
open import Cat.Instances.Product
open import Cat.Functor.Adjoint
open import Cat.Instances.Sets
open import Cat.Functor.Hom
open import Cat.Prelude

import Cat.Functor.Reasoning as Func
import Cat.Reasoning as Cat
module Cat.Functor.Adjoint.Hom where

module _ {o ℓ o' ℓ'} {C : Precategory o ℓ} {D : Precategory o' ℓ'}
         {L : Functor D C} {R : Functor C D}
         where
  private
    module C = Cat C
    module D = Cat D
    module L = Func L
    module R = Func R
  open __
  open _=>_

Adjoints as hom-isomorphisms🔗

Recall from the page on adjoint functors that an adjoint pair induces an isomorphism

of sending each morphism to its left and right adjuncts, respectively. What that page does not mention is that any functors with such a correspondence — as long as the isomorphism is natural — actually generates an adjunction with the unit and counit given by the adjuncts of each identity morphism.

More precisely, the data we require is an equivalence (of sets) such that the equation

holds. While this may seem un-motivated, it’s really a naturality square for a transformation between the bifunctors and whose data has been “unfolded” into elementary terms.

  hom-iso-natural
    : (∀ {x y}  C.Hom (L.₀ x) y  D.Hom x (R.₀ y))
     Type _
  hom-iso-natural f =
     {a b c d} (g : C.Hom a b) (h : D.Hom c d) x
     f (g C.∘ x C.∘ L.₁ h) ≡ R.₁ g D.∘ f x D.∘ h

  hom-iso→adjoints
    : (f :  {x y}  C.Hom (L.₀ x) y  D.Hom x (R.₀ y))
     (eqv :  {x y}  is-equiv (f {x} {y}))
     hom-iso-natural f
     L ⊣ R
  hom-iso→adjoints f f-equiv natural = adj' where
    f⁻¹ :  {x y}  D.Hom x (R.₀ y)  C.Hom (L.₀ x) y
    f⁻¹ = equiv→inverse f-equiv

    inv-natural :  {a b c d} (g : C.Hom a b) (h : D.Hom c d) x
                 f⁻¹ (R.₁ g D.∘ x D.∘ h) ≡ g C.∘ f⁻¹ x C.∘ L.₁ h
    inv-natural g h x = ap fst $ is-contr→is-prop (f-equiv .is-eqv _)
      (f⁻¹ (R.₁ g D.∘ x D.∘ h) , refl)
      ( g C.∘ f⁻¹ x C.∘ L.₁ h
      , natural _ _ _
      ∙ sym (equiv→counit f-equiv _)
      ∙ ap (f ⊙ f⁻¹)
           (D.extendl (ap (R.₁ g D._) (equiv→counit f-equiv _))))

We do not require an explicit naturality witness for the inverse of since if a natural transformation is componentwise invertible, then its inverse is natural as well. It remains to use our “binaturality” to compute that and do indeed give a system of adjunction units and co-units.

    adj' : L ⊣ R
    adj' .unit .η x = f C.id
    adj' .unit .is-natural x y h =
      f C.id D.∘ h                    ≡⟨ D.introl R.F-id ⟩
      R.₁ C.id D.∘ f C.id D.∘ h       ≡˘⟨ natural _ _ _
      f (C.id C.∘ C.id C.∘ L.₁ h)     ≡⟨ ap f (C.cancell (C.idl _) ∙ C.intror (C.idl _ ∙ L.F-id))
      f (L.₁ h C.∘ C.id C.∘ L.₁ D.id) ≡⟨ natural _ _ C.id ⟩
      R.(L.₁ h) D.∘ f C.id D.∘ D.id ≡⟨ D.refl⟩∘⟨ D.idr _
      R.(L.₁ h) D.∘ f C.id          ∎
    adj' .counit .η x = f⁻¹ D.id
    adj' .counit .is-natural x y f =
      f⁻¹ D.id C.∘ L.(R.₁ f) ≡⟨ C.introl refl ⟩
      C.id C.∘ f⁻¹ D.id C.∘ L.(R.₁ f) ≡˘⟨ inv-natural _ _ _
      f⁻¹ (R.₁ C.id D.∘ D.id D.∘ R.₁ f) ≡⟨ ap f⁻¹ (D.cancell (D.idr _ ∙ R.F-id) ∙ D.intror (D.idl _))
      f⁻¹ (R.₁ f D.∘ D.id D.∘ D.id)     ≡⟨ inv-natural _ _ _
      f C.∘ f⁻¹ D.id C.∘ L.₁ D.id       ≡⟨ C.refl⟩∘⟨ C.elimr L.F-id ⟩
      f C.∘ f⁻¹ D.id                    ∎
    adj' .zig =
      f⁻¹ D.id C.∘ L.(f C.id)          ≡⟨ C.introl refl ⟩
      C.id C.∘ f⁻¹ D.id C.∘ L.(f C.id) ≡˘⟨ inv-natural _ _ _
      f⁻¹ (R.₁ C.id D.∘ D.id D.∘ f C.id) ≡⟨ ap f⁻¹ (D.cancell (D.idr _ ∙ R.F-id))
      f⁻¹ (f C.id)                       ≡⟨ equiv→unit f-equiv _
      C.id                               ∎
    adj' .zag =
      R.(f⁻¹ D.id) D.∘ f C.id          ≡⟨ D.refl⟩∘⟨ D.intror refl ⟩
      R.(f⁻¹ D.id) D.∘ f C.id D.∘ D.id ≡˘⟨ natural _ _ _
      f (f⁻¹ D.id C.∘ C.id C.∘ L.₁ D.id) ≡⟨ ap f (C.elimr (C.idl _ ∙ L.F-id))
      f (f⁻¹ D.id)                       ≡⟨ equiv→counit f-equiv _
      D.id                               ∎
  hom-iso-inv-natural
    : (f :  {x y}  D.Hom x (R.₀ y)  C.Hom (L.₀ x) y)
     Type _
  hom-iso-inv-natural f =
     {a b c d} (g : C.Hom a b) (h : D.Hom c d) x
     f (R.₁ g D.∘ x D.∘ h) ≡ g C.∘ f x C.∘ L.₁ h

  hom-iso-inv→adjoints
    : (f :  {x y}  D.Hom x (R.₀ y)  C.Hom (L.₀ x) y)
     (eqv :  {x y}  is-equiv (f {x} {y}))
     hom-iso-inv-natural f
     L ⊣ R
  hom-iso-inv→adjoints f f-equiv natural = hom-iso→adjoints f.from (f.inverse .snd) nat where
    module f {x} {y} = Equiv (_ , f-equiv {x} {y})
    abstract
      nat : hom-iso-natural f.from
      nat g h x = f.injective (f.ε _ ∙ sym (natural _ _ _ ∙ ap (g C._) (ap (C._∘ L.₁ h) (f.ε _))))

module _ {o ℓ o'} {C : Precategory o ℓ} {D : Precategory o' ℓ}
         {L : Functor D C} {R : Functor C D}
         where
  private
    module C = Cat C
    module D = Cat D
    module L = Func L
    module R = Func R

  hom-natural-iso→adjoints
    : (Hom[-,-] C F∘ (Functor.op L F× Id)) ≅ⁿ (Hom[-,-] D F∘ (Id F× R))
     L ⊣ R
  hom-natural-iso→adjoints eta =
    hom-iso→adjoints (to .η _) (natural-iso-to-is-equiv eta (_ , _)) λ g h x 
      happly (to .is-natural _ _ (h , g)) x
    where
      open Isoⁿ eta
      open _=>_

module _ {o ℓ o'} {C : Precategory o ℓ} {D : Precategory o' ℓ}
         {L : Functor D C} {R : Functor C D}
         (adj : L ⊣ R)
         where
  private
    module C = Cat C
    module D = Cat D
    module L = Func L
    module R = Func R

    hom-equiv :  {a b}  C.Hom (L.₀ a) b ≃ D.Hom a (R.₀ b)
    hom-equiv = adjunct-hom-equiv adj

  adjunct-hom-iso-from
    :  a  Hom-from C (L.₀ a) ≅ⁿ Hom-from D a F∘ R
  adjunct-hom-iso-from a = iso→isoⁿ  _  equiv→iso hom-equiv)
    λ f  funext λ g  sym (L-adjunct-naturalr adj _ _)

  adjunct-hom-iso-into
    :  b  Hom-into C b F∘ Functor.op L ≅ⁿ Hom-into D (R.₀ b)
  adjunct-hom-iso-into b = iso→isoⁿ  _  equiv→iso hom-equiv)
    λ f  funext λ g  sym (L-adjunct-naturall adj _ _)

  adjunct-hom-iso
    : Hom[-,-] C F∘ (Functor.op L F× Id) ≅ⁿ Hom[-,-] D F∘ (Id F× R)
  adjunct-hom-iso = iso→isoⁿ  _  equiv→iso hom-equiv)
    λ (f , h)  funext λ g  sym (L-adjunct-natural₂ adj _ _ _)