module Cat.Functor.Conservative where
private variable
: Level
o h o₁ h₁ : Precategory o h
C D J open Precategory
open Functor
Conservative functors🔗
We say a functor is conservative if it reflects isomorphisms. More concretely, if is some morphism and if is an iso in then must have already been an iso in
: Functor C D → Type _
is-conservative {C = C} {D = D} F =
is-conservative ∀ {A B} {f : C .Hom A B}
→ is-invertible D (F .F₁ f) → is-invertible C f
As a general fact, conservative functors reflect limits and colimits that they preserve (given those (co)limits exist in the first place!).
The rough proof sketch is as follows: let be some cone in such that is a limit in and a limit in of the same diagram that is preserved by By the universal property of there exists a map from the apex of to the apex of in Furthermore, as is a limit in becomes an isomorphism in The situation is summarised by the following diagram, which shows how maps cones in to cones in (the coloured cones are assumes to be limiting).
However,
is conservative, which implies that
was an isomorphism in
all along! This means that
must be a limit in
as well (see is-invertible→is-limitp
).
module _ {F : Functor C D} (conservative : is-conservative F) where
private
open _=>_
module C = Cat C
module D = Cat D
module F = Func F
conservative-reflects-limits: ∀ {Dia : Functor J C}
→ Limit Dia
→ preserves-limit F Dia
→ reflects-limit F Dia
{K} {eps} FK-lim =
conservative-reflects-limits L-lim preservesa
is-invertible→is-limitp{K = Limit.Ext L-lim} {epsy = Limit.cone L-lim} (Limit.has-limit L-lim)
(eps .η) (λ f → sym (eps .is-natural _ _ f) ∙ C.elimr (K .F-id)) refl
$ conservative
$ invert
where
module L-lim = Limit L-lim
module FL-lim = is-limit (preservesa L-lim.has-limit)
module FK-lim = is-limit FK-lim
: D.Hom (F .F₀ L-lim.apex) (F .F₀ (K .F₀ tt))
uinv =
uinv .universal
FK-lim(λ j → F .F₁ (L-lim.ψ j))
(λ f → sym (F .F-∘ _ _) ∙ ap (F .F₁) (L-lim.commutes f))
: D.is-invertible (F .F₁ (L-lim.universal (eps .η) _))
invert =
invert .make-invertible uinv
D(FL-lim.unique₂ _ (λ j → FL-lim.commutes j)
(λ j → F.pulll (L-lim.factors _ _) ∙ FK-lim.factors _ _)
(λ j → D.idr _))
(FK-lim.unique₂ _ (λ j → FK-lim.commutes j)
(λ j → D.pulll (FK-lim.factors _ _) ∙ F.collapse (L-lim.factors _ _))
(λ j → D.idr _))
:
conservative→equiv ∀ {A B} {f : C .Hom A B}
→ C.is-invertible f ≃ D.is-invertible (F .F₁ f)
= prop-ext! F.F-map-invertible conservative
conservative→equiv
: is-conservative F.op
conservative^op
conservative^op inv= invertible→co-invertible C
$ conservative $ co-invertible→invertible D inv
Clearly, if
is conservative then so is
so the statement about colimits follows by duality.
conservative-reflects-colimits: ∀ {Dia : Functor J C}
→ Colimit Dia
→ preserves-colimit F Dia
→ reflects-colimit F Dia
conservative-reflects-colimits: ∀ {Dia : Functor J C}
→ Colimit Dia
→ preserves-colimit F Dia
→ reflects-colimit F Dia
{K} {eta} FK-colim =
conservative-reflects-colimits C-colim preservesa
is-invertible→is-colimitp{K = Colimit.Ext C-colim} {etay = Colimit.cocone C-colim} (Colimit.has-colimit C-colim)
(eta .η) (λ f → eta .is-natural _ _ f ∙ C.eliml (K .F-id)) refl
$ conservative
$ invert
where
module C-colim = Colimit C-colim
module FC-colim = is-colimit (preservesa C-colim.has-colimit)
module FK-colim = is-colimit FK-colim
: D.Hom (F .F₀ (K .F₀ tt)) (F .F₀ C-colim.coapex)
uinv =
uinv .universal
FK-colim(λ j → F .F₁ (C-colim.ψ j))
(λ f → sym (F .F-∘ _ _) ∙ ap (F .F₁) (C-colim.commutes f))
: D.is-invertible (F .F₁ (C-colim.universal (eta .η) _))
invert =
invert .make-invertible uinv
D(FK-colim.unique₂ _ (λ j → FK-colim.commutes j)
(λ j → D.pullr (FK-colim.factors _ _) ∙ F.collapse (C-colim.factors _ _))
(λ j → D.idl _))
(FC-colim.unique₂ _ (λ j → FC-colim.commutes j)
(λ j → F.pullr (C-colim.factors _ _) ∙ FK-colim.factors _ _)
(λ j → D.idl _))