module Cat.Displayed.Cartesian.Weak
{o ℓ o' ℓ'}
{ℬ : Precategory o ℓ}
(ℰ : Displayed ℬ o' ℓ')
where
open CR ℬ
open Displayed ℰ
open Cart ℰ
open DR ℰ
open DM ℰ
open Functor
open Functor
private module Fib = FibR ℰ
Weak cartesian morphisms🔗
Some authors use a weaker notion of cartesian morphism when defining fibrations, referred to as a “weak cartesian” or “hypocartesian” morphism. Such morphisms only allow for the construction of universal maps when the morphism to be factored is displayed over the same morphism as the weak cartesian map. This situation is best understood graphically.
record is-weak-cartesian
{a b a' b'} (f : Hom a b) (f' : Hom[ f ] a' b')
: Type (o ⊔ ℓ ⊔ o' ⊔ ℓ')
where
no-eta-equality
field
: ∀ {x'} → (g' : Hom[ f ] x' b') → Hom[ id ] x' a'
universal : ∀ {x'} → (g' : Hom[ f ] x' b') → f' ∘' universal g' ≡[ idr _ ] g'
commutes : ∀ {x'} {g' : Hom[ f ] x' b'}
unique → (h' : Hom[ id ] x' a')
→ f' ∘' h' ≡[ idr _ ] g'
→ h' ≡ universal g'
open is-weak-cartesian
Like their stronger counterparts, weak cartesian lifts are unique up to vertical isomorphism.
weak-cartesian-domain-unique: ∀ {x y} {f : Hom x y}
→ ∀ {x' x'' y'} {f' : Hom[ f ] x' y'} {f'' : Hom[ f ] x'' y'}
→ is-weak-cartesian f f'
→ is-weak-cartesian f f''
→ x' ≅↓ x''
{f' = f'} {f'' = f''} f'-weak f''-weak =
weak-cartesian-domain-unique _ ] to* from*
make-iso[ (to-pathp $ unique f''-weak _ invl* ∙ (sym $ unique f''-weak _ (idr' f'')))
(to-pathp $ unique f'-weak _ invr* ∙ (sym $ unique f'-weak _ (idr' f')))
where
open is-weak-cartesian
= universal f''-weak f'
to* = universal f'-weak f''
from*
: f'' ∘' hom[] (to* ∘' from*) ≡[ idr _ ] f''
invl* = to-pathp $
invl* (f'' ∘' hom[] (to* ∘' from*)) ≡⟨ smashr _ _ ⟩
hom[] (f'' ∘' to* ∘' from*) ≡⟨ revive₁ {p = ap (_ ∘_) (idl _)} (pulll' (idr _) (f''-weak .commutes f')) ⟩
hom[] (f' ∘' from*) ≡⟨ revive₁ (f'-weak .commutes f'') ⟩
hom[] _ ⟩
hom[] f'' ≡⟨ liberate
f'' ∎
: f' ∘' hom[] (from* ∘' to*) ≡[ idr _ ] f'
invr* = to-pathp $
invr* (f' ∘' hom[] (from* ∘' to*)) ≡⟨ smashr _ _ ⟩
hom[] (f' ∘' from* ∘' to*) ≡⟨ revive₁ {p = ap (_ ∘_) (idl _)} (pulll' (idr _) (f'-weak .commutes f'')) ⟩
hom[] (f'' ∘' to*) ≡⟨ revive₁ (f''-weak .commutes f') ⟩
hom[] _ ⟩
hom[] f' ≡⟨ liberate f' ∎
As one would expect, cartesian maps are always weakly cartesian.
Proving this does involve a bit of cubical yoga, as the maps we want to
factorize aren’t definitionally composites, but we can use the
generalized versions of the functions from Cartesian
to get the job done.
: ∀ {x y x' y'} {f : Hom x y} {f' : Hom[ f ] x' y'}
cartesian→weak-cartesian → is-cartesian f f'
→ is-weak-cartesian f f'
{f = f} {f' = f'} cart = weak-cart where
cartesian→weak-cartesian open is-cartesian cart
: is-weak-cartesian f f'
weak-cart .universal g' = universalv g'
weak-cart .commutes g' = commutesv g'
weak-cart .unique h' p = uniquev h' p weak-cart
Furthermore, if
is a fibration, weakly cartesian morphisms are also cartesian. To see
this, we note that the lift of
is cartesian, and thus also a weak cartesian morphism. This implies that
there is an isomorphism between their codomains, which allows us to
invoke cartesian-vert-retraction-stable
to show
that
must also be cartesian.
weak-cartesian→cartesian: ∀ {x y x' y'} {f : Hom x y} {f' : Hom[ f ] x' y'}
→ (fib : Cartesian-fibration)
→ is-weak-cartesian f f'
→ is-cartesian f f'
{x = x} {y' = y'} {f = f} {f' = f'} fib f-weak = f-cart where
weak-cartesian→cartesian open Cartesian-fibration fib
module f-weak = is-weak-cartesian f-weak
: Ob[ x ]
x* = has-lift.x' f y'
x*
: Hom[ f ] x* y'
f* = has-lift.lifting f y'
f*
: is-cartesian f f*
f*-cart = has-lift.cartesian f y'
f*-cart
: is-weak-cartesian f f*
f*-weak = cartesian→weak-cartesian f*-cart
f*-weak
: is-cartesian f f'
f-cart =
f-cart
cartesian-vertical-retraction-stable f*-cart(iso[]→to-has-section[] (weak-cartesian-domain-unique f*-weak f-weak))
(f-weak.commutes f*)
is a weak cartesian morphism if and only if postcomposition of onto vertical maps is an equivalence.
postcompose-equiv→weak-cartesian: ∀ {x y x' y'} {f : Hom x y}
→ (f' : Hom[ f ] x' y')
→ (∀ {x''} → is-equiv {A = Hom[ id ] x'' x'} (f' ∘'_))
→ is-weak-cartesian f f'
.universal h' =
postcompose-equiv→weak-cartesian f' eqv (hom[ idr _ ]⁻ h')
equiv→inverse eqv .commutes h' =
postcompose-equiv→weak-cartesian f' eqv (equiv→counit eqv (hom[ idr _ ]⁻ h'))
to-pathp⁻ .unique m' p =
postcompose-equiv→weak-cartesian f' eqv (sym $ equiv→unit eqv m') ∙ ap (equiv→inverse eqv) (from-pathp⁻ p)
weak-cartesian→postcompose-equiv: ∀ {x y x' x'' y'} {f : Hom x y} {f' : Hom[ f ] x' y'}
→ is-weak-cartesian f f'
→ is-equiv {A = Hom[ id ] x'' x'} (f' ∘'_)
=
weak-cartesian→postcompose-equiv wcart
is-iso→is-equiv $(λ h' → wcart .universal (hom[ idr _ ] h'))
iso (λ h' → from-pathp⁻ (wcart .commutes _) ·· hom[]-∙ _ _ ·· liberate _)
(λ h' → sym $ wcart .unique _ (to-pathp refl))
Weak cartesian lifts🔗
We can also define a notion of weak cartesian lifts, much like we can with their stronger cousins.
record Weak-cartesian-lift
{x y} (f : Hom x y) (y' : Ob[ y ]) : Type (o ⊔ ℓ ⊔ o' ⊔ ℓ')
where
no-eta-equality
field
{x'} : Ob[ x ]
: Hom[ f ] x' y'
lifting : is-weak-cartesian f lifting
weak-cartesian
open is-weak-cartesian weak-cartesian public
A displayed category that has weak cartesian lifts for all morphisms in the base is called a weak cartesian fibration, though we will often use the term weak fibration. Other authors call weak fibrations prefibred categories, though we avoid this name as it conflicts with the precategory/category distinction.
record is-weak-cartesian-fibration : Type (o ⊔ ℓ ⊔ o' ⊔ ℓ') where
no-eta-equality
field
: ∀ {x y} → (f : Hom x y) → (y' : Ob[ y ]) → Weak-cartesian-lift f y'
weak-lift
module weak-lift {x y} (f : Hom x y) (y' : Ob[ y ]) =
(weak-lift f y') Weak-cartesian-lift
Note that if is a weak fibration, we can define an operation that allows us to move vertical morphisms between fibres. This is actually enough to define base change functors, though they are not well behaved unless is a fibration.
: ∀ {x y y' y''} → (f : Hom x y)
rebase → Hom[ id ] y' y''
→ Hom[ id ] (weak-lift.x' f y') (weak-lift.x' f y'')
=
rebase f vert .universal f _ (hom[ idl _ ] (vert ∘' weak-lift.lifting f _)) weak-lift
Every fibration is a weak fibration.
cartesian-lift→weak-cartesian-lift: ∀ {x y} {f : Hom x y} {y' : Ob[ y ]}
→ Cartesian-lift f y'
→ Weak-cartesian-lift f y'
fibration→weak-fibration: Cartesian-fibration
→ is-weak-cartesian-fibration
The proofs of these facts are just shuffling around data, so we omit them.
.Weak-cartesian-lift.x' =
cartesian-lift→weak-cartesian-lift cart .x' cart
Cartesian-lift.Weak-cartesian-lift.lifting =
cartesian-lift→weak-cartesian-lift cart .lifting cart
Cartesian-lift.Weak-cartesian-lift.weak-cartesian =
cartesian-lift→weak-cartesian-lift cart (Cartesian-lift.cartesian cart)
cartesian→weak-cartesian
.is-weak-cartesian-fibration.weak-lift x y' =
fibration→weak-fibration fib (Cartesian-fibration.has-lift fib x y') cartesian-lift→weak-cartesian-lift
Notably, weak fibrations are fibrations when weak cartesian morphisms are closed under composition.
module _ where
open Cartesian-fibration
open is-cartesian
weak-fibration→fibration: is-weak-cartesian-fibration
→ (∀ {x y z x' y' z'} {f : Hom y z} {g : Hom x y}
→ {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'}
→ is-weak-cartesian f f' → is-weak-cartesian g g'
→ is-weak-cartesian (f ∘ g) (f' ∘' g'))
→ Cartesian-fibration
.has-lift {x = x} f y' = f-lift where
weak-fibration→fibration weak-fib weak-∘ open is-weak-cartesian-fibration weak-fib
module weak-∘ {x y z} (f : Hom y z) (g : Hom x y) (z' : Ob[ z ]) =
(weak-∘ (weak-lift.weak-cartesian f z')
is-weak-cartesian (weak-lift.weak-cartesian g _))
To show that has a cartesian lift, we begin by taking the weak cartesian lift of
: Ob[ x ]
x* = weak-lift.x' f y'
x*
: Hom[ f ] x* y'
f* = weak-lift.lifting f y'
f*
: is-weak-cartesian f f*
f*-weak-cartesian = weak-lift.weak-cartesian f y'
f*-weak-cartesian
module f* = is-weak-cartesian (f*-weak-cartesian)
We must now show that the weak cartesian morphism is actually cartesian. To do this, we must construct the following unique universal map:
To do this, we shall first take the weak cartesian lift of Both and are weak cartesian, which means that their composite is also weak cartesian by our hypothesis. We can then factor through to obtain a vertical morphism which we can then compose with to obtain the requisite map.
module Morphisms
{u : Ob} {u' : Ob[ u ]} (m : Hom u x) (h' : Hom[ f ∘ m ] u' y')
where
: Ob[ u ]
u* = weak-lift.x' m _
u*
: Hom[ m ] u* x*
m* = weak-lift.lifting m _
m*
: is-weak-cartesian m m*
m*-weak-cartesian = weak-lift.weak-cartesian m x*
m*-weak-cartesian
module m* = is-weak-cartesian m*-weak-cartesian
module f*∘m* = is-weak-cartesian (weak-∘ f*-weak-cartesian m*-weak-cartesian)
: is-cartesian f f*
f*-cartesian .universal {u = u} {u' = u'} m h' =
f*-cartesian (m* ∘' f*∘m*.universal h')
hom[ idr m ] where open Morphisms m h'
Showing that this commutes is mostly an exercise in cubical yoga; the only real mathematical content is that the factorisation of via commutes.
.commutes {u = u} {u' = u'} m h' = path
f*-cartesian where
open Morphisms m h'
abstract
: f* ∘' hom[ idr m ] (m* ∘' f*∘m*.universal h') ≡ h'
path =
path (m* ∘' f*∘m*.universal h') ≡⟨ whisker-r _ ⟩
f* ∘' hom[] (f* ∘' m* ∘' f*∘m*.universal h') ≡⟨ assoc[] {q = idr _} ⟩
hom[] ((f* ∘' m*) ∘' f*∘m*.universal h') ≡⟨ hom[]⟩⟨ from-pathp⁻ (f*∘m*.commutes h') ⟩
hom[] (hom[] h') ≡⟨ hom[]-∙ _ _ ∙ liberate _ ⟩
hom[] h' ∎
Uniqueness follows similarly as some cubical yoga, followed by the fact that both and are weak cartesian maps.
.unique {u = u} {u' = u'} {m = m} {h' = h'} m' p = path
f*-cartesian where
open Morphisms m h'
abstract
: (f* ∘' m*) ∘' m*.universal m' ≡[ idr (f ∘ m) ] h'
universal-path = to-pathp $
universal-path ((f* ∘' m*) ∘' m*.universal m') ≡˘⟨ assoc[] {p = ap (f ∘_) (idr m)} ⟩
hom[] (f* ∘' (m* ∘' m*.universal m')) ≡⟨ hom[]⟩⟨ ap (f* ∘'_) (from-pathp⁻ (m*.commutes m')) ⟩
hom[] (f* ∘' hom[] m') ≡⟨ smashr _ _ ∙ liberate _ ⟩
hom[]
f* ∘' m' ≡⟨ p ⟩
h' ∎
: m' ≡ hom[ idr m ] (m* ∘' f*∘m*.universal h')
path =
path (m*.commutes m') ⟩
m' ≡˘⟨ from-pathp (m* ∘' m*.universal m') ≡⟨ reindex _ (idr m) ⟩
hom[] (m* ∘' m*.universal m') ≡⟨ hom[]⟩⟨ ap (m* ∘'_) (f*∘m*.unique _ universal-path) ⟩
hom[] (m* ∘' f*∘m*.universal h') ∎ hom[]
Putting this all together, we can finally deduce that is a cartesian lift of
: Cartesian-lift f y'
f-lift .Cartesian-lift.x' = x*
f-lift .Cartesian-lift.lifting = f*
f-lift .Cartesian-lift.cartesian = f*-cartesian f-lift
Factorisations in weak fibrations🔗
If is a weak fibration, then every morphism factorizes into a vertical morphism followed by a weak cartesian morphism.
record weak-cartesian-factorisation
{x y x' y'} {f : Hom x y}
(f' : Hom[ f ] x' y')
: Type (o ⊔ ℓ ⊔ o' ⊔ ℓ')
where
no-eta-equality
field
{x''} : Ob[ x ]
: Hom[ id ] x' x''
vertical : Hom[ f ] x'' y'
weak-cart : is-weak-cartesian f weak-cart
has-weak-cartesian : f' ≡[ sym (idr _) ] weak-cart ∘' vertical
factors
weak-fibration→weak-cartesian-factors: ∀ {x y x' y'} {f : Hom x y}
→ is-weak-cartesian-fibration
→ (f' : Hom[ f ] x' y')
→ weak-cartesian-factorisation f'
Because is a weak fibration, every morphism in has a weak cartesian lift. This allows us to take the lift of which will form the weak cartesian component of the factorisation. The vertical component can be obtained by taking the universal factorisation of by the lift of
{y' = y'} {f = f} wfib f' = weak-factor where
weak-fibration→weak-cartesian-factors open is-weak-cartesian-fibration wfib
module f-lift = weak-lift f y'
open weak-cartesian-factorisation
: weak-cartesian-factorisation f'
weak-factor .x'' = f-lift.x'
weak-factor .vertical = f-lift.universal f'
weak-factor .weak-cart = f-lift.lifting
weak-factor .has-weak-cartesian = f-lift.weak-cartesian
weak-factor .factors = symP $ f-lift.commutes f' weak-factor
Weak fibrations and equivalence of Hom sets🔗
If is a weak fibration, then the hom sets and are equivalent, where is the domain of the lift of along To go from to we use the vertical component of the factorisation of this forms an equivalence, as this factorisation is unique.
module _ (wfib : is-weak-cartesian-fibration) where
open is-weak-cartesian-fibration wfib
weak-fibration→universal-is-equiv: ∀ {x y x' y'}
→ (f : Hom x y)
→ is-equiv (weak-lift.universal f y' {x'})
{y' = y'} f = is-iso→is-equiv $
weak-fibration→universal-is-equiv (λ f' → hom[ idr f ] (weak-lift.lifting f y' ∘' f') )
iso (λ f' → sym $ weak-lift.unique f y' f' (to-pathp refl))
(λ f' → cancel _ _ (weak-lift.commutes f y' f'))
weak-fibration→vertical-equiv: ∀ {x y x' y'}
→ (f : Hom x y)
→ Hom[ f ] x' y' ≃ Hom[ id ] x' (weak-lift.x' f y')
{y' = y'} f =
weak-fibration→vertical-equiv .universal f y' ,
weak-lift weak-fibration→universal-is-equiv f
Furthermore, this equivalence can be extended into a natural isomorphism between and
weak-fibration→hom-iso-into: ∀ {x y y'} (u : Hom x y)
→ Hom-over-into ℰ u y' ≅ⁿ Hom-into (Fibre ℰ x) (weak-lift.x' u y')
{x} {y} {y'} u = to-natural-iso mi where
weak-fibration→hom-iso-into open make-natural-iso
: Ob[ x ]
u*y' = weak-lift.x' u y'
u*y'
: make-natural-iso (Hom-over-into ℰ u y') (Hom-into (Fibre ℰ x) u*y')
mi .eta x u' = weak-lift.universal u y' u'
mi .inv x v' = hom[ idr u ] (weak-lift.lifting u y' ∘' v')
mi .eta∘inv x = funext λ v' →
mi .unique u _ _ (to-pathp refl)
sym $ weak-lift.inv∘eta x = funext λ u' →
mi (weak-lift.commutes u _ _)
from-pathp .natural x y v' = funext λ u' →
mi .unique u _ _ $ to-pathp $
weak-lift_ _
smashr _ (ap (u ∘_) (idl id)) _ (pulll' _ (weak-lift.commutes _ _ _)) ∙ weave
An extremely useful fact is that the converse is true: if there is some lifting of objects for every morphism in along with a natural equivalence of homs as above, then is a weak fibration.
This result is the primary reason to care about weak fibrations, as we already have a toolkit for constructing natural equivalences of hom sets! Most notably, this allows us to use the theory of adjuncts to construct weak fibrations.
module _ (_*₀_ : ∀ {x y} → Hom x y → Ob[ y ] → Ob[ x ]) where
open is-weak-cartesian-fibration
open Weak-cartesian-lift
open is-weak-cartesian
private
vertical-equiv-iso-natural: (∀ {x y x' y'} {f : Hom x y} → Hom[ f ] x' y' → Hom[ id ] x' (f *₀ y'))
→ Type _
to =
vertical-equiv-iso-natural ∀ {x y x' x'' y'} {f : Hom x y}
→ (f' : Hom[ f ] x'' y') (g' : Hom[ id ] x' x'')
→ to (hom[ idr _ ] (f' ∘' g')) ≡[ sym (idl id) ] to f' ∘' g'
vertical-equiv→weak-fibration: (to* : ∀ {x y x' y'} {f : Hom x y} → Hom[ f ] x' y' → Hom[ id ] x' (f *₀ y'))
→ (∀ {x y x' y'} {f : Hom x y} → is-equiv (to* {x} {y} {x'} {y'} {f}))
→ vertical-equiv-iso-natural to*
→ is-weak-cartesian-fibration
.weak-lift f y' = f-lift where vertical-equiv→weak-fibration to* to-eqv natural
To start, we note that the inverse portion of the equivalence is also natural.
: ∀ {x y x' y'} {f : Hom x y} → Hom[ id ] x' (f *₀ y') → Hom[ f ] x' y'
from* = equiv→inverse to-eqv
from*
from*-natural: ∀ {x y} {f : Hom x y} {x' x'' : Ob[ x ]} {y' : Ob[ y ]}
→ (f' : Hom[ id ] x'' (f *₀ y')) (g' : Hom[ id ] x' x'')
→ from* (hom[ idl id ] (f' ∘' g')) ≡[ sym (idr f) ] from* f' ∘' g'
{f = f} f' g' =
from*-natural (to-eqv .is-eqv (hom[ idl id ] (f' ∘' g')))
to-pathp⁻ $ ap fst $ is-contr→is-prop (from* (hom[ idl id ] (f' ∘' g')) , equiv→counit to-eqv _)
(hom[ idr f ] (from* f' ∘' g') , from-pathp⁻ (natural (from* f') g') ∙
(hom[]⟩⟨ ap (_∘' g') (equiv→counit to-eqv _)))
We then proceed to construct a weak lift of We can use our object lifting function to construct the domain of the lift, apply the inverse direction of the equivalence to to obtain the required lifting
: Weak-cartesian-lift f y'
f-lift .x' = f *₀ y'
f-lift .lifting = from* id' f-lift
Now, we must show that the constructed lifting is weakly cartesian. We can use the forward direction of the equivalence to construct the universal map; the remaining properties follow from the fact that the equivalence is natural.
.weak-cartesian .universal g' = to* g'
f-lift .weak-cartesian .commutes g' = to-pathp $
f-lift (from* id' ∘' to* g') ≡˘⟨ from-pathp⁻ (from*-natural id' (to* g')) ⟩
hom[] (hom[] (id' ∘' to* g')) ≡⟨ ap from* idl[] ⟩
from* (to* g') ≡⟨ equiv→unit to-eqv g' ⟩
from*
g' ∎.weak-cartesian .unique {g' = g'} h' p =
f-lift {p = idl id} ⟩
h' ≡˘⟨ idl[] (id' ∘' h') ≡˘⟨ hom[]⟩⟨ ap (_∘' h') (equiv→counit to-eqv id') ⟩
hom[] (to* (from* id') ∘' h') ≡˘⟨ from-pathp⁻ (natural (from* id') h') ⟩
hom[] (hom[] (from* id' ∘' h')) ≡⟨ ap to* (from-pathp p) ⟩
to* to* g' ∎
module _ (U : ∀ {x y} → Hom x y → Functor (Fibre ℰ y) (Fibre ℰ x)) where
open Functor
open _=>_
hom-iso→weak-fibration: (∀ {x y y'} (u : Hom x y)
→ Hom-over-into ℰ u y' ≅ⁿ Hom-into (Fibre ℰ x) (U u .F₀ y'))
→ is-weak-cartesian-fibration
=
hom-iso→weak-fibration hom-iso
vertical-equiv→weak-fibration(λ u → U u .F₀)
(λ u' → Isoⁿ.to (hom-iso _) .η _ u')
(natural-iso-to-is-equiv (hom-iso _) _)
λ f' g' → to-pathp⁻ $
(Isoⁿ.to (hom-iso _) .is-natural _ _ g') f' happly
Note that this result does not extend to fibrations; the equivalence of homs can only get us weak cartesian lifts. To make the final step to a fibration, we need to use other means.
However, we do obtain a natural isomorphism between and
module _ (fib : Cartesian-fibration) where
open Cartesian-fibration fib
open Indexing ℰ fib
fibration→hom-iso-from: ∀ {x y x'} (u : Hom x y)
→ Hom-over-from ℰ u x' ≅ⁿ Hom-from (Fibre ℰ x) x' F∘ base-change u
{x} {y} {x'} u = to-natural-iso mi where
fibration→hom-iso-from open make-natural-iso
: make-natural-iso
mi (Hom-over-from ℰ u x')
(Hom-from (Fibre ℰ x) x' F∘ base-change u)
.eta x u' = has-lift.universalv u x u'
mi .inv x v' = hom[ idr u ] (has-lift.lifting u x ∘' v')
mi .eta∘inv x = funext λ v' →
mi .uniquev u _ _ (to-pathp refl)
sym $ has-lift.inv∘eta x = funext λ u' →
mi (has-lift.commutesv u _ _)
from-pathp .natural _ _ v' = funext λ u' →
mi .uniquep u _ _ _ _ _ $
has-lift.pulllf (has-lift.commutesp u _ id-comm _)
Fib_ (has-lift.commutesv u _ _)
∙[] pullr[] ∙[] to-pathp refl
fibration→universal-is-equiv: ∀ {x y x' y'}
→ (f : Hom x y)
→ is-equiv (has-lift.universalv f y' {x'})
=
fibration→universal-is-equiv f (fibration→weak-fibration fib) f
weak-fibration→universal-is-equiv
fibration→vertical-equiv: ∀ {x y x' y'}
→ (f : Hom x y)
→ Hom[ f ] x' y' ≃ Hom[ id ] x' (has-lift.x' f y')
=
fibration→vertical-equiv f (fibration→weak-fibration fib) f
weak-fibration→vertical-equiv
fibration→hom-iso-into: ∀ {x y y'} (u : Hom x y)
→ Hom-over-into ℰ u y' ≅ⁿ Hom-into (Fibre ℰ x) (has-lift.x' u y')
=
fibration→hom-iso-into u (fibration→weak-fibration fib) u weak-fibration→hom-iso-into
If we combine this with weak-fibration→hom-iso-into
, we obtain a
natural iso between
and
fibration→hom-iso: ∀ {x y} (u : Hom x y)
→ Hom-over ℰ u ≅ⁿ Hom[-,-] (Fibre ℰ x) F∘ (Id F× base-change u)
{x = x} u = to-natural-iso mi where
fibration→hom-iso open make-natural-iso
open _=>_
module into-iso {y'} = Isoⁿ (fibration→hom-iso-into {y' = y'} u)
module from-iso {x'} = Isoⁿ (fibration→hom-iso-from {x' = x'} u)
: make-natural-iso (Hom-over ℰ u) (Hom[-,-] (Fibre ℰ x) F∘ (Id F× base-change u))
mi .eta x u' = has-lift.universalv u _ u'
mi .inv x v' = hom[ idr u ] (has-lift.lifting u _ ∘' v')
mi .eta∘inv x = funext λ v' →
mi .uniquev u _ _ (to-pathp refl)
sym $ has-lift.inv∘eta x = funext λ u' →
mi (has-lift.commutesv u _ _)
from-pathp .natural _ _ (v₁' , v₂') = funext λ u' →
mi (apr' (happly (into-iso.to .is-natural _ _ v₁') u'))
sym (happly (from-iso.to .is-natural _ _ v₂') (hom[ idr _ ] (u' ∘' v₁')))
·· sym (into-iso.to .η _) (smashr _ _ ∙ reindex _ _ ) ·· ap