module Order.Semilattice.Meet where
Meet semilattices🔗
A meet semilattice is a partially ordered set which has all finite meets. This means, in particular, that it has a top element, since that is the meet of the empty family. Note that, even though meet-semilattices are presented as being equipped with a binary operation this is not actual structure on the partially-ordered set: meets are uniquely determined, so “being a meet-semilattice” is always a proposition.
record is-meet-semilattice {o ℓ} (P : Poset o ℓ) : Type (o ⊔ ℓ) where
field
_∩_ : ⌞ P ⌟ → ⌞ P ⌟ → ⌞ P ⌟
: ∀ x y → is-meet P x y (x ∩ y)
∩-meets : Top P
has-top
infixr 25 _∩_
open Order.Reasoning P
open Meets ∩-meets public
open Top has-top using (top; !) public
abstract
is-meet-semilattice-is-prop: ∀ {o ℓ} {P : Poset o ℓ}
→ is-prop (is-meet-semilattice P)
{P = P} p q = path where
is-meet-semilattice-is-prop open Order.Diagram.Top P using (H-Level-Top)
open is-meet-semilattice
module p = is-meet-semilattice p
module q = is-meet-semilattice q
: ∀ x y → x p.∩ y ≡ x q.∩ y
meetp = meet-unique (p.∩-meets x y) (q.∩-meets x y)
meetp x y
: p ≡ q
path ._∩_ x y = meetp x y i
path i .∩-meets x y = is-prop→pathp (λ i → hlevel {T = is-meet P x y (meetp x y i)} 1) (p.∩-meets x y) (q.∩-meets x y) i
path i .has-top = hlevel {T = Top P} 1 p.has-top q.has-top i
path i
private variable
: Level
o ℓ o' ℓ' : Poset o ℓ
P Q R
instance
: ∀ {n} → H-Level (is-meet-semilattice P) (suc n)
H-Level-is-meet-semilattice = prop-instance is-meet-semilattice-is-prop H-Level-is-meet-semilattice
A homomorphism of meet-semilattices is a monotone function that sends finite meets to finite meets. In particular, it suffices to have and
since the converse direction of these inequalities is guaranteed by the universal properties.
record
is-meet-slat-hom{P : Poset o ℓ} {Q : Poset o' ℓ'} (f : Monotone P Q)
(P-slat : is-meet-semilattice P) (Q-slat : is-meet-semilattice Q)
: Type (o ⊔ ℓ')
where
no-eta-equality
private
module P = Poset P
module Pₗ = is-meet-semilattice P-slat
module Q = Order.Reasoning Q
module Qₗ = is-meet-semilattice Q-slat
open is-meet
field
: ∀ x y → f · x Qₗ.∩ f · y Q.≤ f · (x Pₗ.∩ y)
∩-≤ : Qₗ.top Q.≤ f · Pₗ.top top-≤
: ∀ x y → f · (x Pₗ.∩ y) ≡ f · x Qₗ.∩ f · y
pres-∩ =
pres-∩ x y .≤-antisym
Q(Qₗ.∩-universal (f · (x Pₗ.∩ y))
(f .pres-≤ Pₗ.∩≤l)
(f .pres-≤ Pₗ.∩≤r))
(∩-≤ x y)
: f · Pₗ.top ≡ Qₗ.top
pres-top = Q.≤-antisym Qₗ.! top-≤
pres-top
pres-meets: ∀ {x y m}
→ is-meet P x y m
→ is-meet Q (f · x) (f · y) (f · m)
.is-meet.meet≤l = f .pres-≤ (meet .meet≤l)
pres-meets meet .is-meet.meet≤r = f .pres-≤ (meet .meet≤r)
pres-meets meet {x = x} {y = y} {m = m} meet .is-meet.greatest ub ub≤fx ub≤fy =
pres-meets .≤⟨ Qₗ.∩-universal ub ub≤fx ub≤fy ⟩
ub Q(f · x) Qₗ.∩ (f · y) Q.≤⟨ ∩-≤ x y ⟩
(x Pₗ.∩ y) Q.≤⟨ f .pres-≤ (meet .greatest (x Pₗ.∩ y) Pₗ.∩≤l Pₗ.∩≤r) ⟩
f · .≤∎
f · m Q
pres-tops: ∀ {t}
→ is-top P t
→ is-top Q (f · t)
{t = t} t-top x =
pres-tops .≤⟨ Qₗ.! ⟩
x Q.top Q.≤⟨ top-≤ ⟩
Qₗ.top Q.≤⟨ f .pres-≤ (t-top Pₗ.top) ⟩
f · Pₗ.≤∎
f · t Q
open is-meet-slat-hom
unquoteDecl H-Level-is-meet-slat-hom = declare-record-hlevel 1 H-Level-is-meet-slat-hom (quote is-meet-slat-hom)
The category of meet-semilattices🔗
id-meet-slat-hom: ∀ (Pₗ : is-meet-semilattice P)
→ is-meet-slat-hom idₘ Pₗ Pₗ
{P = P} _ .∩-≤ _ _ = Poset.≤-refl P
id-meet-slat-hom {P = P} _ .top-≤ = Poset.≤-refl P
id-meet-slat-hom
∘-meet-slat-hom: ∀ {Pₗ Qₗ Rₗ} {f : Monotone Q R} {g : Monotone P Q}
→ is-meet-slat-hom f Qₗ Rₗ
→ is-meet-slat-hom g Pₗ Qₗ
→ is-meet-slat-hom (f ∘ₘ g) Pₗ Rₗ
{R = R} {f = f} {g = g} f-pres g-pres .∩-≤ x y =
∘-meet-slat-hom .Poset.≤-trans (f-pres .∩-≤ (g · x) (g · y)) (f .pres-≤ (g-pres .∩-≤ x y))
R {R = R} {f = f} {g = g} f-pres g-pres .top-≤ =
∘-meet-slat-hom .Poset.≤-trans (f-pres .top-≤) (f .pres-≤ (g-pres .top-≤)) R
: ∀ o ℓ → Subcat (Posets o ℓ) (o ⊔ ℓ) (o ⊔ ℓ)
Meet-slats-subcat .Subcat.is-ob = is-meet-semilattice
Meet-slats-subcat o ℓ .Subcat.is-hom = is-meet-slat-hom
Meet-slats-subcat o ℓ .Subcat.is-hom-prop _ _ _ = hlevel 1
Meet-slats-subcat o ℓ .Subcat.is-hom-id = id-meet-slat-hom
Meet-slats-subcat o ℓ .Subcat.is-hom-∘ = ∘-meet-slat-hom
Meet-slats-subcat o ℓ
: ∀ o ℓ → Precategory (lsuc o ⊔ lsuc ℓ) (o ⊔ ℓ)
Meet-slats = Subcategory (Meet-slats-subcat o ℓ) Meet-slats o ℓ
module Meet-slats {o} {ℓ} = Cat.Reasoning (Meet-slats o ℓ)
: ∀ o ℓ → Type _
Meet-semilattice = Meet-slats.Ob {o} {ℓ} Meet-semilattice o ℓ