module Order.Semilattice.Meet where
Meet semilatticesπ
A meet semilattice is a partially ordered set which has all finite meets. This means, in particular, that it has a top element, since that is the meet of the empty family. Note that, even though meet-semilattices are presented as being equipped with a binary operation this is not actual structure on the partially-ordered set: meets are uniquely determined, so βbeing a meet-semilatticeβ is always a proposition.
record is-meet-semilattice {o β} (P : Poset o β) : Type (o β β) where
field
_β©_ : β P β β β P β β β P β
: β x y β is-meet P x y (x β© y)
β©-meets : Top P
has-top
infixr 25 _β©_
open Order.Reasoning P
open Meets β©-meets public
open Top has-top using (top; !) public
abstract
is-meet-semilattice-is-prop: β {o β} {P : Poset o β}
β is-prop (is-meet-semilattice P)
{P = P} p q = path where
is-meet-semilattice-is-prop open Order.Diagram.Top P using (H-Level-Top)
open is-meet-semilattice
module p = is-meet-semilattice p
module q = is-meet-semilattice q
: β x y β x p.β© y β‘ x q.β© y
meetp = meet-unique (p.β©-meets x y) (q.β©-meets x y)
meetp x y
: p β‘ q
path ._β©_ x y = meetp x y i
path i .β©-meets x y = is-propβpathp (Ξ» i β hlevel {T = is-meet P x y (meetp x y i)} 1) (p.β©-meets x y) (q.β©-meets x y) i
path i .has-top = hlevel {T = Top P} 1 p.has-top q.has-top i
path i
private variable
: Level
o β o' β' : Poset o β
P Q R
instance
: β {n} β H-Level (is-meet-semilattice P) (suc n)
H-Level-is-meet-semilattice = prop-instance is-meet-semilattice-is-prop H-Level-is-meet-semilattice
A homomorphism of meet-semilattices is a monotone function that sends finite meets to finite meets. In particular, it suffices to have and
since the converse direction of these inequalities is guaranteed by the universal properties.
record
is-meet-slat-hom{P : Poset o β} {Q : Poset o' β'} (f : Monotone P Q)
(P-slat : is-meet-semilattice P) (Q-slat : is-meet-semilattice Q)
: Type (o β β')
where
no-eta-equality
private
module P = Poset P
module Pβ = is-meet-semilattice P-slat
module Q = Order.Reasoning Q
module Qβ = is-meet-semilattice Q-slat
open is-meet
field
: β x y β (f # x) Qβ.β© (f # y) Q.β€ f # (x Pβ.β© y)
β©-β€ : Qβ.top Q.β€ f # Pβ.top top-β€
: β x y β f # (x Pβ.β© y) β‘ f # x Qβ.β© f # y
pres-β© =
pres-β© x y .β€-antisym
Q(Qβ.β©-universal (f # (x Pβ.β© y))
(f .pres-β€ Pβ.β©β€l)
(f .pres-β€ Pβ.β©β€r))
(β©-β€ x y)
: f # Pβ.top β‘ Qβ.top
pres-top = Q.β€-antisym Qβ.! top-β€
pres-top
pres-meets: β {x y m}
β is-meet P x y m
β is-meet Q (f # x) (f # y) (f # m)
.is-meet.meetβ€l = f .pres-β€ (meet .meetβ€l)
pres-meets meet .is-meet.meetβ€r = f .pres-β€ (meet .meetβ€r)
pres-meets meet {x = x} {y = y} {m = m} meet .is-meet.greatest ub ubβ€fx ubβ€fy =
pres-meets .β€β¨ Qβ.β©-universal ub ubβ€fx ubβ€fy β©
ub Q(f # x) Qβ.β© (f # y) Q.β€β¨ β©-β€ x y β©
(x Pβ.β© y) Q.β€β¨ f .pres-β€ (meet .greatest (x Pβ.β© y) Pβ.β©β€l Pβ.β©β€r) β©
f # .β€β
f # m Q
pres-tops: β {t}
β is-top P t
β is-top Q (f # t)
{t = t} t-top x =
pres-tops .β€β¨ Qβ.! β©
x Q.top Q.β€β¨ top-β€ β©
Qβ.top Q.β€β¨ f .pres-β€ (t-top Pβ.top) β©
f # Pβ.β€β
f # t Q
open is-meet-slat-hom
unquoteDecl H-Level-is-meet-slat-hom = declare-record-hlevel 1 H-Level-is-meet-slat-hom (quote is-meet-slat-hom)
The category of meet-semilatticesπ
id-meet-slat-hom: β (Pβ : is-meet-semilattice P)
β is-meet-slat-hom idβ Pβ Pβ
{P = P} _ .β©-β€ _ _ = Poset.β€-refl P
id-meet-slat-hom {P = P} _ .top-β€ = Poset.β€-refl P
id-meet-slat-hom
β-meet-slat-hom: β {Pβ Qβ Rβ} {f : Monotone Q R} {g : Monotone P Q}
β is-meet-slat-hom f Qβ Rβ
β is-meet-slat-hom g Pβ Qβ
β is-meet-slat-hom (f ββ g) Pβ Rβ
{R = R} {f = f} {g = g} f-pres g-pres .β©-β€ x y =
β-meet-slat-hom .Poset.β€-trans (f-pres .β©-β€ (g # x) (g # y)) (f .pres-β€ (g-pres .β©-β€ x y))
R {R = R} {f = f} {g = g} f-pres g-pres .top-β€ =
β-meet-slat-hom .Poset.β€-trans (f-pres .top-β€) (f .pres-β€ (g-pres .top-β€)) R
: β o β β Subcat (Posets o β) (o β β) (o β β)
Meet-slats-subcat .Subcat.is-ob = is-meet-semilattice
Meet-slats-subcat o β .Subcat.is-hom = is-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-prop _ _ _ = hlevel 1
Meet-slats-subcat o β .Subcat.is-hom-id = id-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-β = β-meet-slat-hom
Meet-slats-subcat o β
: β o β β Precategory (lsuc o β lsuc β) (o β β)
Meet-slats = Subcategory (Meet-slats-subcat o β) Meet-slats o β
module Meet-slats {o} {β} = Cat.Reasoning (Meet-slats o β)
: β o β β Type _
Meet-semilattice = Meet-slats.Ob {o} {β} Meet-semilattice o β