open import Cat.Prelude

open import Data.Sum.Base

open import Order.Lattice.Distributive
open import Order.Diagram.Bottom
open import Order.Diagram.Join
open import Order.Diagram.Meet
open import Order.Diagram.Top
open import Order.Lattice
open import Order.Base

import Order.Diagram.Join.Reasoning as Joins
import Order.Diagram.Meet.Reasoning as Meets
import Order.Lattice.Reasoning as Lat
import Order.Reasoning as Pos
module Order.Heyting where

Heyting algebras🔗

A Heyting algebra is a lattice which is equipped to handle implication: it has a binary operation for which we have an equivalence between and Reading this from the perspective of logic, we may interpret the parameter as a context, so that our equivalence says we have inference rules

When we enrich our poset of propositions to a category of contexts, the notion of Heyting algebra is generalised to that of Cartesian closed category (with finite coproducts).

record is-heyting-algebra {o ℓ} (P : Poset o ℓ) : Type (o ⊔ ℓ) where
  open Poset P

  field
    has-top    : Top P
    has-bottom : Bottom P

    __      : Ob  Ob  Ob
    ∪-joins  :  x y  is-join P x y (x ∪ y)

    __      : Ob  Ob  Ob
    ∩-meets  :  x y  is-meet P x y (x ∩ y)

    __  : ⌞ P ⌟  ⌞ P ⌟  ⌞ P ⌟
    ƛ    :  {x y z}  x ∩ y ≤ z  x ≤ y ⇨ z
    ev   :  {x y z}  x ≤ y ⇨ z  x ∩ y ≤ z
  infixr 23 __
  infixr 24 __
  infixr 25 __

  has-is-lattice : is-lattice P
  has-is-lattice .is-lattice.has-bottom = has-bottom
  has-is-lattice .is-lattice.has-top    = has-top
  has-is-lattice .is-lattice.__        = __
  has-is-lattice .is-lattice.∩-meets    = ∩-meets
  has-is-lattice .is-lattice.__        = __
  has-is-lattice .is-lattice.∪-joins    = ∪-joins

Elementary properties🔗

module _ {o ℓ} {P : Poset o ℓ} (heyt : is-heyting-algebra P) where
  open is-heyting-algebra heyt
  open Lat has-is-lattice hiding (__ ; __)
  open Pos P

The first thing we note about Heyting algebras is that they are distributive lattices. This is because, for an arbitrary we can reduce the problem of showing

by adjointness, to showing

where the universal property of the join is actually applicable — allowing us further reductions to showing showing and The following calculation formalises this sketch:

  ∩-∪-distrib≤ :  {x y z}  x ∩ (y ∪ z)(x ∩ y)(x ∩ z)
  ∩-∪-distrib≤ {x} {y} {z} =
    let
      case₁ : y ∩ x ≤ (x ∩ y)(x ∩ z)
      case₁ = ≤-trans (≤-refl' ∩-comm) l≤∪

      case₂ : z ∩ x ≤ (x ∩ y)(x ∩ z)
      case₂ = ≤-trans (≤-refl' ∩-comm) r≤∪

      body : (y ∪ z) ≤ x ⇨ (x ∩ y)(x ∩ z)
      body = ∪-universal _ (ƛ case₁) (ƛ case₂)
    in x ∩ (y ∪ z)    =⟨ ∩-comm ⟩
       (y ∪ z) ∩ x    ≤⟨ ev body ⟩
       x ∩ y ∪ x ∩ z  ≤∎
  ∩-distribl :  {x y z}  x ∩ (y ∪ z)(x ∩ y)(x ∩ z)
  ∩-distribl = distrib-le→∩-distribl has-is-lattice ∩-∪-distrib≤

  open Distributive.from-∩ has-is-lattice ∩-distribl