module Order.Diagram.Glb wheremodule _ {o ℓ} (P : Poset o ℓ) where
  open Poset PGreatest lower bounds🔗
A glb (short for greatest lower bound) for a family of elements is, as the name implies, a greatest element among the lower bounds of the Being a lower bound means that we have for all Being the greatest lower bound means that if we’re given some other satisfying (for each then we have
A more common word to use for “greatest lower bound” is
“meet”. But since “meet” is a fairly uninformative name, and “glb”
(pronounced “glib”) is just plain fun to say, we stick with the non-word
for the indexed concept. However, if we’re talking about the glb of a
binary family, then we use the word “meet”. The distinction
here is entirely artificial, and it’s just because we can’t reuse the
identifier is-glb for these two
slightly different cases. Summing up: to us, a meet is a glb of two
elements.
  record is-glb {ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) (glb : Ob)
          : Type (o ⊔ ℓ ⊔ ℓᵢ) where
    no-eta-equality
    field
      glb≤fam  : ∀ i → glb ≤ F i
      greatest : (lb' : Ob) → (∀ i → lb' ≤ F i) → lb' ≤ glb
  record Glb {ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) : Type (o ⊔ ℓ ⊔ ℓᵢ) where
    no-eta-equality
    field
      glb : Ob
      has-glb : is-glb F glb
    open is-glb has-glb publicunquoteDecl H-Level-is-glb = declare-record-hlevel 1 H-Level-is-glb (quote is-glb)
module _ {o ℓ} {P : Poset o ℓ} where
  open Poset P
  open is-glb
  glb-unique
    : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x y}
    → is-glb P F x → is-glb P F y
    → x ≡ y
  glb-unique is is' = ≤-antisym
    (is' .greatest _ (is .glb≤fam))
    (is .greatest _ (is' .glb≤fam))
  Glb-is-prop
    : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob}
    → is-prop (Glb P F)
  Glb-is-prop p q i .Glb.glb =
    glb-unique (Glb.has-glb p) (Glb.has-glb q) i
  Glb-is-prop {F = F} p q i .Glb.has-glb =
    is-prop→pathp {B = λ i → is-glb P F (glb-unique (Glb.has-glb p) (Glb.has-glb q) i)}
      (λ i → hlevel 1)
      (Glb.has-glb p) (Glb.has-glb q) i
  instance
    H-Level-Glb
      : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {n}
      → H-Level (Glb P F) (suc n)
    H-Level-Glb = prop-instance Glb-is-prop
  lift-is-glb
    : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {glb}
    → is-glb P F glb → is-glb P (F ⊙ lower {ℓ = ℓᵢ'}) glb
  lift-is-glb is .glb≤fam (lift ix) = is .glb≤fam ix
  lift-is-glb is .greatest ub' le = is .greatest ub' (le ⊙ lift)
  lift-glb
    : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob}
    → Glb P F → Glb P (F ⊙ lower {ℓ = ℓᵢ'})
  lift-glb glb .Glb.glb = Glb.glb glb
  lift-glb glb .Glb.has-glb = lift-is-glb (Glb.has-glb glb)
  lower-is-glb
    : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {glb}
    → is-glb P (F ⊙ lower {ℓ = ℓᵢ'}) glb → is-glb P F glb
  lower-is-glb is .glb≤fam ix = is .glb≤fam (lift ix)
  lower-is-glb is .greatest ub' le = is .greatest ub' (le ⊙ lower)
  lower-glb
    : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob}
    → Glb P (F ⊙ lower {ℓ = ℓᵢ'}) → Glb P F
  lower-glb glb .Glb.glb = Glb.glb glb
  lower-glb glb .Glb.has-glb = lower-is-glb (Glb.has-glb glb)  module _
    {ℓᵢ ℓᵢ'} {Ix : Type ℓᵢ} {Im : Type ℓᵢ'}
    {f : Ix → Im}
    {F : Im → Ob}
    (surj : is-surjective f)
    where
      cover-preserves-is-glb : ∀ {glb} → is-glb P F glb → is-glb P (F ⊙ f) glb
      cover-preserves-is-glb g .glb≤fam i = g .glb≤fam (f i)
      cover-preserves-is-glb g .greatest lb' le = g .greatest lb' λ i → ∥-∥-out! do
        (i' , p) ← surj i
        pure (≤-trans (le i') (≤-refl' (ap F p)))
      cover-preserves-glb : Glb P F → Glb P (F ⊙ f)
      cover-preserves-glb g .Glb.glb = _
      cover-preserves-glb g .Glb.has-glb = cover-preserves-is-glb (g .Glb.has-glb)
      cover-reflects-is-glb : ∀ {glb} → is-glb P (F ⊙ f) glb → is-glb P F glb
      cover-reflects-is-glb g .glb≤fam i = ∥-∥-out! do
        (y , p) ← surj i
        pure (≤-trans (g .glb≤fam y) (≤-refl' (ap F p)))
      cover-reflects-is-glb g .greatest lb' le = g .greatest lb' λ i → le (f i)
      cover-reflects-glb : Glb P (F ⊙ f) → Glb P F
      cover-reflects-glb g .Glb.glb = _
      cover-reflects-glb g .Glb.has-glb = cover-reflects-is-glb (g .Glb.has-glb)As limits🔗
If a poset has all greatest lower bounds of size then it is complete when viewed as a category.
module _ {o ℓ} {P : Poset o ℓ} where
  open Poset P  glbs→complete
    : ∀ {oκ ℓκ}
    → (∀ {I : Type oκ} (k : I → Ob) → Glb P k)
    → is-complete oκ ℓκ (poset→category P)
  glbs→complete glbs K = to-limit (to-is-limit lim) where
    open make-is-limit
    module K = Functor K
    open Glb (glbs K.₀)
    lim : make-is-limit K glb
    lim .ψ = glb≤fam
    lim .commutes _ = prop!
    lim .universal eps _ = greatest _ eps
    lim .factors _ _ = prop!
    lim .unique _ _ _ _ = prop!