module Cat.Monoidal.Reverse {o ℓ}
{C : Precategory o ℓ} (Cᵐ : Monoidal-category C)
where
open Cat.Reasoning C
private module C = Monoidal-category Cᵐ
open _=>_
Reverse monoidal categories🔗
Given a monoidal category with tensor product we can define the reverse monoidal category with the same unit and the tensor product flipped around:
_^rev : Monoidal-category C
_^rev .-⊗- = Flip C.-⊗-
_^rev .Unit = C.Unit
The coherence isomorphisms are straightforward to obtain from those of the left and right unitors are swapped, and the associator is reversed and has its arguments swapped.
_^rev .unitor-l = iso→isoⁿ (isoⁿ→iso C.unitor-r)
λ f → sym (C.unitor-r .Isoⁿ.to .is-natural _ _ f)
_^rev .unitor-r = iso→isoⁿ (isoⁿ→iso C.unitor-l)
λ f → sym (C.unitor-l .Isoⁿ.to .is-natural _ _ f)
_^rev .associator = iso→isoⁿ
(λ (a , b , c) → isoⁿ→iso (C.associator ni⁻¹) (c , b , a))
λ (f , g , h) → sym (C.associator .Isoⁿ.from .is-natural _ _ (h , g , f))
_^rev .triangle = C.triangle-α→
_^rev .pentagon = C.pentagon-α→
_ = Deloop
Thinking of monoidal categories as one-object bicategories (via the Deloop
ing construction), the
operation corresponds to flipping the 1-cells of a bicategory, leaving
the 2-cells unchanged.