module Cat.Instances.Slice.Limit where
Arbitrary limits in slices🔗
Suppose we have some really weird diagram in a slice category, like the one below. Well, alright, it’s not that weird, but it’s not a pullback or a terminal object, so we don’t a priori know how to compute its limit in the slice.
The observation that will let us compute a limit for this diagram is inspecting the computation of products in a slice. To compute the product of and we had to pass to a pullback of in — which we had assumed exists. But! Take a look at what that diagram looks like:
We “exploded” a diagram of shape to one of shape This process can be described in a way easier to generalise: We “exploded” our diagram to one indexed by a category which contains contains an extra point, and has a unique map between each object of — the join of these categories.
module
_ {o ℓ o' ℓ'} {C : Precategory o ℓ} {J : Precategory o' ℓ'} {o : ⌞ C ⌟}
(F : Functor J (Slice C o))
where
open Terminal
open /-Obj
open /-Hom
private
module C = Cat.Reasoning C
module J = Cat.Reasoning J
module C/o = Cat.Reasoning (Slice C o)
module F = Functor F
Generically, if we have a diagram we can “explode” this into a diagram compute the limit in then pass back to the slice category.
: Functor (J ⋆ ⊤Cat) C
F' .F₀ (inl x) = F.₀ x .domain
F' .F₀ (inr x) = o
F' .F₁ {inl x} {inl y} (lift f) = F.₁ f .map
F' .F₁ {inl x} {inr y} _ = F.₀ x .map
F' .F₁ {inr x} {inr y} (lift h) = C.id
F' .F-id {inl x} = ap map F.F-id
F' .F-id {inr x} = refl
F' .F-∘ {inl x} {inl y} {inl z} (lift f) (lift g) = ap map (F.F-∘ f g)
F' .F-∘ {inl x} {inl y} {inr z} (lift f) (lift g) = sym (F.F₁ g .commutes)
F' .F-∘ {inl x} {inr y} {inr z} (lift f) (lift g) = C.introl refl
F' .F-∘ {inr x} {inr y} {inr z} (lift f) (lift g) = C.introl refl
F'
: Limit F' → Limit F
limit-above→limit-in-slice = to-limit (to-is-limit lim) where
limit-above→limit-in-slice lims module lims = Limit lims
open make-is-limit
: C/o.Ob
apex = cut (lims.ψ (inr tt))
apex
: (j : J.Ob) → /-Hom apex (F .F₀ j)
nadir .map = lims.ψ (inl j)
nadir j .commutes = lims.commutes (lift tt)
nadir j
module Cone
{x : C/o.Ob}
(eps : (j : J.Ob) → C/o.Hom x (F .F₀ j))
(p : ∀ {i j : J.Ob} → (f : J.Hom i j) → F .F₁ f C/o.∘ eps i ≡ eps j)
where
: (j : J.Ob ⊎ ⊤) → C.Hom (x .domain) (F' .F₀ j)
ϕ (inl j) = eps j .map
ϕ (inr _) = x .map
ϕ
ϕ-commutes: ∀ {i j : J.Ob ⊎ ⊤}
→ (f : ⋆Hom J ⊤Cat i j)
→ F' .F₁ f C.∘ ϕ i ≡ ϕ j
{inl i} {inl j} (lift f) = ap map (p f)
ϕ-commutes {inl i} {inr j} (lift f) = eps i .commutes
ϕ-commutes {inr i} {inr x} (lift f) = C.idl _
ϕ-commutes
ϕ-factor: ∀ (other : /-Hom x apex)
→ (∀ j → nadir j C/o.∘ other ≡ eps j)
→ (j : J.Ob ⊎ ⊤)
→ lims.ψ j C.∘ other .map ≡ ϕ j
(inl j) = ap map (q j)
ϕ-factor other q (inr tt) = other .commutes
ϕ-factor other q
: make-is-limit F apex
lim .ψ = nadir
lim .commutes f = ext (lims.commutes (lift f))
lim .universal {x} eps p .map =
lim .universal (Cone.ϕ eps p) (Cone.ϕ-commutes eps p)
lims.universal eps p .commutes =
lim .factors _ _
lims.factors eps p = ext (lims.factors _ _)
lim .unique eps p other q = ext $
lim .unique _ _ (other .map) (Cone.ϕ-factor eps p other q) lims
In particular, if a category is complete, then so are its slices:
is-complete→slice-is-complete: ∀ {ℓ o o' ℓ'} {C : Precategory o ℓ} {c : ⌞ C ⌟}
→ is-complete o' ℓ' C
→ is-complete o' ℓ' (Slice C c)
= limit-above→limit-in-slice F (lims _) is-complete→slice-is-complete lims F