module Cat.Functor.Conservative whereprivate variable
  o h oâ hâ : Level
  C D J : Precategory o h
open Precategory
open Functor
open lifts-limit
open creates-limit
open lifts-colimit
open creates-colimit
open creates-lan
open creates-ranConservative functorsđ
We say a functor is conservative if it reflects isomorphisms. More concretely, if is some morphism and if is an iso in then must have already been an iso in
is-conservative : Functor C D â Type _
is-conservative {C = C} {D = D} F =
  â {A B} {f : C .Hom A B}
  â is-invertible D (F .Fâ f) â is-invertible C fConservative functors reflect (co)limits that they preserveđ
As a general fact, conservative functors reflect limits and colimits that they preserve (given that those (co)limits exist in the domain).
The rough proof sketch is as follows: let be some cone in such that is a limit in and a limit in of the same diagram that is preserved by By the universal property of there exists a map from the apex of to the apex of in Furthermore, as is a limit in becomes an isomorphism in The situation is summarised by the following diagram, which shows how maps cones in to cones in (the coloured cones are assumed to be limiting).
However,
is conservative, which implies that
was an isomorphism in
all along! This means that
must be a limit in
as well (see is-invertibleâis-limitp).
module _ {F : Functor C D} (conservative : is-conservative F) where
  private
    open _=>_
    module C = Cat C
    module D = Cat D
    module F = Func F
  conservative-reflects-limits
    : â {Dia : Functor J C}
    â Limit Dia
    â preserves-limit F Dia
    â reflects-limit F Dia
  conservative-reflects-limits L-lim preserves {K} {eps} FK-lim =
    is-invertibleâis-limitp
      {K = Limit.Ext L-lim} {epsy = Limit.cone L-lim} (Limit.has-limit L-lim)
      (eps .η) (λ f â sym (eps .is-natural _ _ f) â C.elimr (K .F-id)) refl
      $ conservative
      $ invert
    where
      module L-lim = Limit L-lim
      module FL-lim = is-limit (preserves L-lim.has-limit)
      module FK-lim = is-limit FK-lim
      uinv : D.Hom (F .Fâ L-lim.apex) (F .Fâ (K .Fâ tt))
      uinv =
        FK-lim.universal
          (λ j â F .Fâ (L-lim.Ï j))
          (λ f â sym (F .F-â _ _) â ap (F .Fâ) (L-lim.commutes f))
      invert : D.is-invertible (F .Fâ (L-lim.universal (eps .η) _))
      invert =
        D.make-invertible uinv
          (FL-lim.uniqueâ FL-lim.Ï (λ j â FL-lim.commutes j)
            (λ j â F.pulll (L-lim.factors _ _) â FK-lim.factors _ _)
            (λ j â D.idr _))
          (FK-lim.uniqueâ FK-lim.Ï (λ j â FK-lim.commutes j)
            (λ j â D.pulll (FK-lim.factors _ _) â F.collapse (L-lim.factors _ _))
            (λ j â D.idr _))As a nice consequence, a conservative functor that lifts a certain class of limits also creates those limits.
  conservative+liftsâcreates-limits
    : â {oj âj} {J : Precategory oj âj}
    â lifts-limits-of J F â creates-limits-of J F
  conservative+liftsâcreates-limits F-lifts .has-lifts-limit = F-lifts
  conservative+liftsâcreates-limits F-lifts .reflects lim =
    conservative-reflects-limits (lifted-lim .lifted) (liftsâpreserves-limit lifted-lim) lim
    where lifted-lim = F-lifts (to-ran lim)  conservativeâequiv :
    â {A B} {f : C .Hom A B}
    â C.is-invertible f â D.is-invertible (F .Fâ f)
  conservativeâequiv = prop-ext! F.F-map-invertible conservative
  conservative^op : is-conservative F.op
  conservative^op inv
    = invertibleâco-invertible C
    $ conservative
    $ co-invertibleâinvertible D inv
Clearly, if
is conservative then so is
so the statement about colimits follows by duality.
  conservative-reflects-colimits
    : â {Dia : Functor J C}
    â Colimit Dia
    â preserves-colimit F Dia
    â reflects-colimit F Dia
  conservative-reflects-colimits
    : â {Dia : Functor J C}
    â Colimit Dia
    â preserves-colimit F Dia
    â reflects-colimit F Dia  conservative-reflects-colimits C-colim preserves {K} {eta} FK-colim =
    is-invertibleâis-colimitp
      {K = Colimit.Ext C-colim} {etay = Colimit.cocone C-colim} (Colimit.has-colimit C-colim)
      (eta .η) (λ f â eta .is-natural _ _ f â C.eliml (K .F-id)) refl
      $ conservative
      $ invert
    where
      module C-colim = Colimit C-colim
      module FC-colim = is-colimit (preserves C-colim.has-colimit)
      module FK-colim = is-colimit FK-colim
      uinv : D.Hom (F .Fâ (K .Fâ tt)) (F .Fâ C-colim.coapex)
      uinv =
        FK-colim.universal
          (λ j â F .Fâ (C-colim.Ï j))
          (λ f â sym (F .F-â _ _) â ap (F .Fâ) (C-colim.commutes f))
      invert : D.is-invertible (F .Fâ (C-colim.universal (eta .η) _))
      invert =
        D.make-invertible uinv
          (FK-colim.uniqueâ _ (λ j â FK-colim.commutes j)
            (λ j â D.pullr (FK-colim.factors _ _) â F.collapse (C-colim.factors _ _))
            (λ j â D.idl _))
          (FC-colim.uniqueâ _ (λ j â FC-colim.commutes j)
            (λ j â F.pullr (C-colim.factors _ _) â FK-colim.factors _ _)
            (λ j â D.idl _))
  conservative+liftsâcreates-colimits
    : â {oj âj} {J : Precategory oj âj}
    â lifts-colimits-of J F â creates-colimits-of J F
  conservative+liftsâcreates-colimits F-lifts .has-lifts-colimit = F-lifts
  conservative+liftsâcreates-colimits F-lifts .reflects colim =
    conservative-reflects-colimits (lifted-colim .lifted) (liftsâpreserves-colimit lifted-colim) colim
    where lifted-colim = F-lifts (to-lan colim)Conservative functors reflect Kan extensions that they preserveđ
We can generalise the results above to Kan extensions: conservative functors automatically reflect any Kan extensions that exist and that they preserve.
module _ {F : Functor C D} (conservative : is-conservative F) where
  private
    open _=>_
    module C = Cat C
    module D = Cat D
    module F = Func F  conservative-reflects-ran
    : â {o â} {J' : Precategory o â} {p : Functor J J'} {Dia : Functor J C}
    â Ran p Dia
    â preserves-ran p Dia F
    â reflects-ran p Dia F
  conservative-reflects-lan
    : â {o â} {J' : Precategory o â} {p : Functor J J'} {Dia : Functor J C}
    â Lan p Dia
    â preserves-lan p Dia F
    â reflects-lan p Dia FWe start with a lemma: if is a conservative functor and is a natural transformation such that is invertible, then is invertible; this is immediate from the fact that invertibility of natural transformations is a pointwise condition. Concisely, this means that the postcomposition functor is conservative if is.
  conservativeâpostcompose-conservative
    : â {o â} {E : Precategory o â}
    â is-conservative (postcompose F {D = E})
  conservativeâpostcompose-conservative inv =
    invertibleâinvertibleâż _ λ d â
      conservative (is-invertibleâżâis-invertible inv d)The idea is then the same as for (co)limits.
  conservative-reflects-ran {p = p} {Dia} L-ran preserves {K} {eps} FK-ran =
    is-invertibleâis-ran (Ran.has-ran L-ran)
    $ conservativeâpostcompose-conservative invert
    where
      module L-ran = Ran L-ran
      module FL-ran = is-ran (preserves L-ran.has-ran)
      module FK-ran = is-ran FK-ran
      F-eps : (F Fâ L-ran.Ext) Fâ p => F Fâ Dia
      F-eps = nat-assoc-from (F âž L-ran.eps)
      uinv : F Fâ L-ran.Ext => F Fâ K
      uinv = FK-ran.Ï F-eps
      invert : is-invertibleâż (F âž L-ran.Ï eps)
      invert = make-invertible _ uinv
        (FL-ran.Ï-uniqâ F-eps
          (ext λ j â sym $ F.pulll (L-ran.Ï-comm ηâ j) â FK-ran.Ï-comm ηâ j)
          (ext λ j â sym (D.idr _)))
        (FK-ran.Ï-uniqâ (nat-assoc-from (F âž eps))
          (ext λ j â sym $ D.pulll (FK-ran.Ï-comm ηâ j) â F.collapse (L-ran.Ï-comm ηâ j))
          (ext λ j â sym (D.idr _)))
  conservative-reflects-lan {p = p} {Dia} L-lan preserves {K} {eta} FK-lan =
    is-invertibleâis-lan (Lan.has-lan L-lan)
    $ conservativeâpostcompose-conservative invert
    where
      module L-lan = Lan L-lan
      module FL-lan = is-lan (preserves L-lan.has-lan)
      module FK-lan = is-lan FK-lan
      F-eta : F Fâ Dia => (F Fâ L-lan.Ext) Fâ p
      F-eta = nat-assoc-to (F âž L-lan.eta)
      uinv : F Fâ K => F Fâ L-lan.Ext
      uinv = FK-lan.Ï F-eta
      invert : is-invertibleâż (F âž L-lan.Ï eta)
      invert = make-invertible _ uinv
        (FK-lan.Ï-uniqâ (nat-assoc-to (F âž eta))
          (ext λ j â sym $ D.pullr (FK-lan.Ï-comm ηâ j) â F.collapse (L-lan.Ï-comm ηâ j))
          (ext λ j â sym (D.idl _)))
        (FL-lan.Ï-uniqâ F-eta
          (ext λ j â sym $ F.pullr (L-lan.Ï-comm ηâ j) â FK-lan.Ï-comm ηâ j)
          (ext λ j â sym (D.idl _)))
  conservative+liftsâcreates-ran
    : â {o â} {J' : Precategory o â} {p : Functor J J'}
    â lifts-ran-along p F â creates-ran-along p F
  conservative+liftsâcreates-ran F-lifts .has-lifts-ran = F-lifts
  conservative+liftsâcreates-ran F-lifts .reflects ran =
    conservative-reflects-ran lifted-ran.lifted (liftsâpreserves-ran lifted-ran) ran
    where
      lifted-ran = F-lifts (to-ran ran)
      module lifted-ran = lifts-ran lifted-ran
  conservative+liftsâcreates-lan
    : â {o â} {J' : Precategory o â} {p : Functor J J'}
    â lifts-lan-along p F â creates-lan-along p F
  conservative+liftsâcreates-lan F-lifts .has-lifts-lan = F-lifts
  conservative+liftsâcreates-lan F-lifts .reflects lan =
    conservative-reflects-lan lifted-lan.lifted (liftsâpreserves-lan lifted-lan) lan
    where
      lifted-lan = F-lifts (to-lan lan)
      module lifted-lan = lifts-lan lifted-lan