module Cat.Displayed.Instances.Subobjects
{o ℓ} (B : Precategory o ℓ)
whereopen Cr B
open DisplayedThe fibration of subobjects🔗
Given a base category we can define the displayed category of subobjects over This is, in essence, a restriction of the codomain fibration of but with our attention restricted to the monomorphisms rather than arbitrary maps
record Subobject (y : Ob) : Type (o ⊔ ℓ) where
no-eta-equality
field
{dom} : Ob
map : Hom dom y
monic : is-monic map
open Subobject publicTo make formalisation smoother, we define our own version of
displayed morphisms in the subobject fibration, rather than reusing
those of the fundamental self-indexing. The reason for this is quite
technical: the type of maps in the self-indexing is only dependent (the
domains and) the morphisms being considered, meaning nothing
constrains the proofs that these are monomorphisms, causing unification
to fail at the determining the full Subobjects involved.
record ≤-over {x y} (f : Hom x y) (a : Subobject x) (b : Subobject y) : Type ℓ where
no-eta-equality
field
map : Hom (a .dom) (b .dom)
com : f ∘ Subobject.map a ≡ Subobject.map b ∘ map
open ≤-over publicWe will denote the type of maps in the subobject fibration by since there is at most one such map: if satisfy then, since is a mono,
{-# INLINE Subobject.constructor #-}
≤-over-is-prop
: ∀ {x y} {f : Hom x y} {a : Subobject x} {b : Subobject y}
→ (p q : ≤-over f a b)
→ p ≡ q
≤-over-is-prop {f = f} {a} {b} p q = path where
maps : p .map ≡ q .map
maps = b .monic (p .map) (q .map) (sym (p .com) ∙ q .com)
path : p ≡ q
path i .map = maps i
path i .com = is-prop→pathp (λ i → Hom-set _ _ (f ∘ a .map) (b .map ∘ maps i)) (p .com) (q .com) i
instance
H-Level-≤-over
: ∀ {x y} {f : Hom x y} {a : Subobject x} {b : Subobject y} {n}
→ H-Level (≤-over f a b) (suc n)
H-Level-≤-over = prop-instance ≤-over-is-propSetting up the displayed category is now nothing more than routine verification: the identity map satisfies and commutative squares can be pasted together.
Subobjects : Displayed B (o ⊔ ℓ) ℓ
Subobjects .Ob[_] y = Subobject y
Subobjects .Hom[_] = ≤-over
Subobjects .Hom[_]-set f a b = hlevel 2
Subobjects .id' .map = id
Subobjects .id' .com = id-comm-sym
Subobjects ._∘'_ α β .map = α .map ∘ β .map
Subobjects ._∘'_ α β .com = pullr (β .com) ∙ extendl (α .com)Subobjects .idr' _ = prop!
Subobjects .idl' _ = prop!
Subobjects .assoc' _ _ _ = prop!
Subobjects .hom[_] p f .map = f .map
Subobjects .hom[_] p f .com = ap₂ _∘_ (sym p) refl ∙ f .com
Subobjects .coh[_] p f = prop!
open Weak-cocartesian-lift
open is-weak-cocartesian
open Cartesian-lift
open is-cartesian
open PullbackAs a fibration🔗
By exactly the same construction as for the fundamental self-indexing, if has pullbacks, the displayed category we have built is actually a fibration. The construction is slightly simpler now that we have no need to worry about uniqueness, but we can remind ourselves of the universal property:
On the first stage, we are given the data in black: we can complete an open span to a Cartesian square (in blue) by pulling back along this base change remains a monomorphism. Now given the data in red, we verify that the dashed arrow exists, which is enough for its uniqueness.
module with-pullbacks (pb : has-pullbacks B) where -- The blue square:
pullback-subobject
: ∀ {X Y} (h : Hom X Y) (g : Subobject Y)
→ Subobject X
pullback-subobject h g .dom = pb h (g .map) .apex
pullback-subobject h g .map = pb h (g .map) .p₁
pullback-subobject h g .monic = is-monic→pullback-is-monic
(g .monic) (rotate-pullback (pb h (g .map) .has-is-pb))
Subobject-fibration : Cartesian-fibration Subobjects
Subobject-fibration f y' = l where
it : Pullback _ _ _
it = pb (y' .map) f
l : Cartesian-lift Subobjects f y'
l .x' = pullback-subobject f y'
l .lifting .map = pb f (y' .map) .p₂
l .lifting .com = pb f (y' .map) .square
-- The dashed red arrow:
l .cartesian .universal {u' = u'} m h' = λ where
.map → pb f (y' .map) .universal (pushr refl ∙ h' .com)
.com → sym (pb f (y' .map) .p₁∘universal)
l .cartesian .commutes _ _ = prop!
l .cartesian .unique _ _ = prop!As a (weak) cocartesian fibration🔗
If has an image factorisation for every morphism, then its fibration of subobjects is a weak cocartesian fibration. By a general fact, if also has pullbacks, then is a cocartesian fibration.
Subobject-weak-opfibration
: (∀ {x y} (f : Hom x y) → Image B f)
→ Weak-cocartesian-fibration Subobjects
Subobject-weak-opfibration ims f x' = l where
module im = Image B (ims (f ∘ x' .map))To understand this result, we remind ourselves of the universal property of an image factorisation for It is the initial subobject through with factors. That is to say, if is another subobject, and for some map then Summarised diagrammatically, the universal property of an image factorisation looks like a kite:
Now compare this with the universal property required of a weak co-cartesian lift:
By smooshing the corner together (i.e., composing and we see that this is exactly the kite-shaped universal property of
l : Weak-cocartesian-lift Subobjects f x'
l .y' .dom = im.Im
l .y' .map = im.Im→codomain
l .y' .monic = im.Im→codomain-is-M
l .lifting .map = im.corestrict
l .lifting .com = sym im.image-factors
l .weak-cocartesian .universal {x' = y'} h .map = im.universal _ (y' .monic) (h .map) (sym (h .com))
l .weak-cocartesian .universal h .com = idl _ ∙ sym im.universal-factors
l .weak-cocartesian .commutes g' = prop!
l .weak-cocartesian .unique _ _ = prop!The aforementioned general fact says that any cartesian and weak cocartesian fibration must actually be a full opfibration.
Subobject-opfibration
: (∀ {x y} (f : Hom x y) → Image B f)
→ (pb : has-pullbacks B)
→ Cocartesian-fibration Subobjects
Subobject-opfibration images pb = fibration+weak-opfibration→opfibration _
(with-pullbacks.Subobject-fibration pb)
(Subobject-weak-opfibration images)Subobjects over a base🔗
We define the category of subobjects of as a fibre of the subobject fibration.
Sub : Ob → Precategory (o ⊔ ℓ) ℓ
Sub y = record { Precategory (Fibre Subobjects y) }
module Sub {y} = Cr (Sub y)_≤ₘ_ : ∀ {y} (a b : Subobject y) → Type _
_≤ₘ_ = ≤-over id
≤ₘ→monic : ∀ {y} {a b : Subobject y} → (f : a ≤ₘ b) → is-monic (f .map)
≤ₘ→monic {a = a} f g h α = a .monic g h $
a .map ∘ g ≡⟨ ap (_∘ g) (introl refl ∙ f .com) ∙ pullr refl ⟩
_ ∘ f .map ∘ g ≡⟨ ap₂ _∘_ refl α ⟩
_ ∘ f .map ∘ h ≡⟨ pulll (sym (f .com) ∙ idl _) ⟩
a .map ∘ h ∎
≤ₘ→mono : ∀ {y} {a b : Subobject y} → a ≤ₘ b → a .dom ↪ b .dom
≤ₘ→mono f .mor = f .map
≤ₘ→mono {a = a} f .monic = ≤ₘ→monic f
cutₛ : ∀ {x y} {f : Hom x y} → is-monic f → Subobject y
cutₛ x .dom = _
cutₛ x .map = _
cutₛ x .monic = x
Sub-antisym
: ∀ {y} {a b : Subobject y}
→ a ≤ₘ b
→ b ≤ₘ a
→ a Sub.≅ b
Sub-antisym f g = Sub.make-iso f g prop! prop!
Sub-path
: ∀ {y} {a b : Subobject y}
→ (p : a .dom ≡ b .dom)
→ PathP (λ i → Hom (p i) y) (a .map) (b .map)
→ a ≡ b
Sub-path p q i .dom = p i
Sub-path p q i .map = q i
Sub-path {a = a} {b = b} p q i .monic {c} =
is-prop→pathp (λ i → Π-is-hlevel³ 1 λ (g h : Hom c (p i)) (_ : q i ∘ g ≡ q i ∘ h) → Hom-set _ _ g h)
(a .monic) (b .monic) iFibrewise cartesian structure🔗
Since products in slice categories are given by pullbacks, and pullbacks preserve monomorphisms, if has pullbacks, then has products, regardless of what is.
Sub-products
: ∀ {y}
→ has-pullbacks B
→ has-products (Sub y)
Sub-products {y} pb a b = prod where
it = pb (a .map) (b .map)
prod : Product (Sub y) a b
prod .Product.apex .dom = it .apex
prod .Product.apex .map = a .map ∘ it .p₁
prod .Product.apex .monic = ∘-is-monic
(a .monic)
(is-monic→pullback-is-monic (b .monic) (rotate-pullback (it .has-is-pb)))
prod .Product.π₁ .map = it .p₁
prod .Product.π₁ .com = idl _
prod .Product.π₂ .map = it .p₂
prod .Product.π₂ .com = idl _ ∙ it .square
prod .Product.has-is-product .is-product.⟨_,_⟩ q≤a q≤b .map =
it .Pullback.universal {p₁' = q≤a .map} {p₂' = q≤b .map} (sym (q≤a .com) ∙ q≤b .com)
prod .Product.has-is-product .is-product.⟨_,_⟩ q≤a q≤b .com =
idl _ ∙ sym (pullr (it .p₁∘universal) ∙ sym (q≤a .com) ∙ idl _)
prod .Product.has-is-product .is-product.π₁∘⟨⟩ = prop!
prod .Product.has-is-product .is-product.π₂∘⟨⟩ = prop!
prod .Product.has-is-product .is-product.unique _ _ = prop!Univalence🔗
Since identity of is given by identity of the underlying objects and identity-over of the corresponding morphisms, if is univalent, we can conclude that is, too. Since is always thin, we can summarise the situation by saying that is a partial order if is univalent.
Sub-is-category : ∀ {y} → is-category B → is-category (Sub y)
Sub-is-category b-cat .to-path {a} {b} x =
Sub-path
(b-cat .to-path i)
(Univalent.Hom-pathp-refll-iso b-cat (sym (x .Sub.from .com) ∙ idl _))
where
i : a .dom ≅ b .dom
i = make-iso (x .Sub.to .map) (x .Sub.from .map) (ap map (Sub.invl x)) (ap map (Sub.invr x))
Sub-is-category b-cat .to-path-over p =
Sub.≅-pathp refl _ prop!As a consequence, the collection of subobjects of any object of a univalent category forms a set.
Subobject-is-set : is-category B → ∀ {A} → is-set (Subobject A)
Subobject-is-set b-cat {A} = Poset.Ob-is-set $
thin→poset (Sub A) (λ _ _ → ≤-over-is-prop) (Sub-is-category b-cat)