module Cat.Displayed.Cartesian.Identity
{o ℓ o' ℓ'} {B : Precategory o ℓ} (E : Displayed B o' ℓ')
where
Identity of cartesian lifts🔗
private
module B = Cr B
open Cat.Displayed.Univalence.Reasoning E
open Cat.Displayed.Univalence E
open Dr E
module _ {a b b'} (e-cat : is-category-displayed) (f : B.Hom a b) where
In this module, we prove that Cartesian lifts in a displayed univalent category form a proposition.
We already know that Cartesian lifts are unique up to a vertical isomorphism, so all that remains is to apply univalence and check that this isomorphism fits into a commuting triangle with the two lifts.
: is-prop (Cartesian-lift E f b')
Cartesian-lift-is-prop = Cartesian-lift-path E obp pres where
Cartesian-lift-is-prop l1 l2 module l1 = Cartesian-lift l1
module l2 = Cartesian-lift l2
= cartesian-domain-unique E l1.cartesian l2.cartesian
im
: l1.x' ≡ l2.x'
obp = ≅↓-identity-system e-cat .to-path im
obp
: PathP (λ i → Hom[ f ] (obp i) b') l1.lifting l2.lifting
pres = Hom[]-pathp-refll-iso e-cat (B.idr f) im l1.lifting l2.lifting
pres (to-pathp[]⁻ (l1.commutes B.id _))