module Cat.Diagram.Coequaliser.RegularEpi wheremodule _ {o ℓ} (C : Precategory o ℓ) where
  open Cat.Reasoning C
  private variable a b : ObRegular epimorphisms🔗
Dually to regular monomorphisms, which behave as embeddings, regular epimorphisms behave like covers: A regular epimorphism expresses as “a union of parts of possibly glued together”.
The definition is also precisely dual: A map is a regular epimorphism if it is the coequaliser of some pair of arrows
  record is-regular-epi (f : Hom a b) : Type (o ⊔ ℓ) where
    no-eta-equality
    constructor reg-epi
    field
      {r}           : Ob
      {arr₁} {arr₂} : Hom r a
      has-is-coeq   : is-coequaliser C arr₁ arr₂ f
    open is-coequaliser has-is-coeq publicFrom the definition we can directly conclude that regular epis are in fact epic:
    is-regular-epi→is-epic : is-epic f
    is-regular-epi→is-epic = is-coequaliser→is-epic _ has-is-coeq
  open is-regular-epi using (is-regular-epi→is-epic) publicEffective epis🔗
Again by duality, we have a pair of canonical choices of maps which may coequalise: Its kernel pair, that is, the pullback of along itself. An epimorphism which coequalises its kernel pair is called an effective epi, and effective epis are immediately seen to be regular epis:
  record is-effective-epi (f : Hom a b) : Type (o ⊔ ℓ) where
    no-eta-equality
    field
      {kernel}       : Ob
      p₁ p₂          : Hom kernel a
      has-kernel-pair : is-kernel-pair C p₁ p₂ f
      has-is-coeq    : is-coequaliser C p₁ p₂ f
    is-effective-epi→is-regular-epi : is-regular-epi f
    is-effective-epi→is-regular-epi = re where
      open is-regular-epi hiding (has-is-coeq)
      re : is-regular-epi f
      re .r = _
      re .arr₁ = _
      re .arr₂ = _
      re .is-regular-epi.has-is-coeq = has-is-coeqIf a regular epimorphism (a coequaliser) has a kernel pair, then it is also the coequaliser of its kernel pair. That is: If the pullback of exists, then is also an effective epimorphism.
module _ {o ℓ} {C : Precategory o ℓ} where
  open Cat.Reasoning C
  private variable a b : Ob  is-regular-epi→is-effective-epi
    : ∀ {a b} {f : Hom a b}
    → Pullback C f f
    → is-regular-epi C f
    → is-effective-epi C f
  is-regular-epi→is-effective-epi {f = f} kp reg = epi where
    module reg = is-regular-epi reg
    module kp = Pullback kp
    open is-effective-epi
    open is-coequaliser
    epi : is-effective-epi C f
    epi .kernel = kp.apex
    epi .p₁ = kp.p₁
    epi .p₂ = kp.p₂
    epi .has-kernel-pair = kp.has-is-pb
    epi .has-is-coeq .coequal = kp.square
    epi .has-is-coeq .universal {F = F} {e'} p = reg.universal q where
      q : e' ∘ reg.arr₁ ≡ e' ∘ reg.arr₂
      q =
        e' ∘ reg.arr₁                               ≡⟨ ap (e' ∘_) (sym kp.p₂∘universal) ⟩
        e' ∘ kp.p₂ ∘ kp.universal (sym reg.coequal)  ≡⟨ pulll (sym p) ⟩
        (e' ∘ kp.p₁) ∘ kp.universal _                ≡⟨ pullr kp.p₁∘universal ⟩
        e' ∘ reg.arr₂                               ∎
    epi .has-is-coeq .factors = reg.factors
    epi .has-is-coeq .unique = reg.uniqueExistence of regular epis🔗
Let be a categories such that has coproducts indexed by the objects and arrows of and let be a functor with a colimit in The canonical map is a regular epimorphism
module _ {o ℓ oj ℓj}
  {C : Precategory o ℓ} {J : Precategory oj ℓj}
  {F : Functor J C}
  (∐Ob : has-coproducts-indexed-by C ⌞ J ⌟)
  (∐Hom : has-coproducts-indexed-by C (Arrow J))
  (∐F : Colimit F)
  where  private
    module C = Cat.Reasoning C
    module J = Cat.Reasoning J
    module F = Cat.Functor.Reasoning F
    module ∐Ob F = Indexed-coproduct (∐Ob F)
    module ∐Hom F = Indexed-coproduct (∐Hom F)
    module ∐F = Colimit ∐F
  open is-regular-epi
  open is-coequaliser  indexed-coproduct→regular-epi : is-regular-epi C (∐Ob.match F.₀ ∐F.ψ)We start by constructing a pair of maps via the universal property of
  indexed-coproduct→regular-epi .r = ∐Hom.ΣF λ (i , j , f) → F.₀ i
  indexed-coproduct→regular-epi .arr₁ = ∐Hom.match _ λ (i , j , f) → ∐Ob.ι F.₀ j C.∘ F.₁ f
  indexed-coproduct→regular-epi .arr₂ = ∐Hom.match _ λ (i , j , f) → ∐Ob.ι F.₀ iBy some rather tedious calculations, we can show that and coequalize
  indexed-coproduct→regular-epi .has-is-coeq .coequal =
    ∐Hom.unique₂ _ λ (i , j , f) →
    (∐Ob.match F.₀ ∐F.ψ C.∘ ∐Hom.match _ _) C.∘ ∐Hom.ι _ (i , j , f) ≡⟨ C.pullr (∐Hom.commute _) ⟩
    ∐Ob.match F.₀ ∐F.ψ C.∘ ∐Ob.ι _ j C.∘ F.₁ f                       ≡⟨ C.pulll (∐Ob.commute _) ⟩
    ∐F.ψ j C.∘ F.₁ f                                                 ≡⟨ ∐F.commutes f ⟩
    ∐F.ψ i                                                           ≡˘⟨ ∐Ob.commute _ ⟩
    ∐Ob.match F.₀ ∐F.ψ C.∘ ∐Ob.ι _ i                                 ≡˘⟨ C.pullr (∐Hom.commute _) ⟩
    (∐Ob.match F.₀ ∐F.ψ C.∘ ∐Hom.match _ _) C.∘ ∐Hom.ι _ (i , j , f) ∎Moreover, and form the universal such coequalizing pair. This follows by yet more brute-force calculation.
  indexed-coproduct→regular-epi .has-is-coeq .universal {e' = e'} p =
    ∐F.universal (λ j → e' C.∘ ∐Ob.ι F.₀ j) comm
    where abstract
      comm
        : ∀ {i j} (f : J.Hom i j)
        → (e' C.∘ ∐Ob.ι F.₀ j) C.∘ F.₁ f ≡ e' C.∘ ∐Ob.ι F.₀ i
      comm {i} {j} f =
        (e' C.∘ ∐Ob.ι F.₀ j) C.∘ F.₁ f                   ≡⟨ C.pullr (sym (∐Hom.commute _)) ⟩
        e' C.∘ (∐Hom.match _ _ C.∘ ∐Hom.ι _ (i , j , f)) ≡⟨ C.extendl p ⟩
        e' C.∘ (∐Hom.match _ _ C.∘ ∐Hom.ι _ (i , j , f)) ≡⟨ ap₂ C._∘_ refl (∐Hom.commute _) ⟩
        e' C.∘ ∐Ob.ι F.₀ i                               ∎
  indexed-coproduct→regular-epi .has-is-coeq .factors {e' = e'} {p = p} =
    ∐Ob.unique₂ F.₀ λ j →
      (∐F.universal _ _ C.∘ ∐Ob.match F.₀ ∐F.ψ) C.∘ ∐Ob.ι F.₀ j ≡⟨ C.pullr (∐Ob.commute _) ⟩
      ∐F.universal _ _ C.∘ ∐F.ψ j                               ≡⟨ ∐F.factors _ _ ⟩
      e' C.∘ ∐Ob.ι F.₀ j                                        ∎
  indexed-coproduct→regular-epi .has-is-coeq .unique {e' = e'} {colim = h} p =
    ∐F.unique _ _ _ λ j →
      h C.∘ ∐F.ψ j                               ≡˘⟨ ap₂ C._∘_ refl (∐Ob.commute _) ⟩
      h C.∘ (∐Ob.match F.₀ ∐F.ψ C.∘ ∐Ob.ι F.₀ j) ≡⟨ C.pulll p ⟩
      e' C.∘ ∐Ob.ι F.₀ j                         ∎