module Borceux whereThough the 1Lab is not purely a formalization of category theory, it does aim to be a useful reference on the subject. However, the 1Lab organizes content in a highly non-linear fashion; this can make it somewhat difficult to use as a companion to more traditional resources.
This page attempts to (somewhat) rectify this situation by gathering all of the results from Francis Borceux’s “Handbook of Categorical Algebra” (Borceux 1994) in a single place.1
Volume 1🔗
1 The language of categories🔗
1.1 Logical foundations of the theory🔗
- Proposition 1.1: Russell’s paradox
 
1.2 Categories and functors🔗
_ = Precategory
_ = Functor
_ = is-strict
_ = Strict-cats
_ = Sets
_ = Groups
_ = poset→category
_ = Disc
_ = B
_ = Slice
_ = Ab↪Sets
_ = Hom[_,-]
_ = Const- Definition 1.2.1: 
Precategory - Definition 1.2.2: 
Functor - Definition 1.2.3: 
is-strict - Proposition 1.2.4: 
Strict-cats - Examples 1.2.5:
Sets
Groups
 - Examples 1.2.6:
poset→category
Disc
B
 - Examples 1.2.7:
Slice
 - Examples 1.2.8:
Ab↪Sets
Hom[_,-]
Const
 
1.3 Natural transformations🔗
_ = _=>_
_ = Cat[_,_]
_ = _◆_
_ = ◆-interchange
_ = よcov₁
_ = yo-is-equiv
_ = yo-naturalr
_ = yo-naturall
_ = constⁿ- Definition 1.3.1: 
_=>_ - Proposition 1.3.2: 
Cat[_,_] - Theorem 1.3.3:
yo-is-equiv
yo-naturalr
yo-naturall
 - Proposition 1.3.4: 
_◆_ - Proposition 1.3.5: 
◆-interchange - Examples 1.3.6:
よcov₁
constⁿ
 
1.4 Contravariant functors🔗
Borceux defines contravariant functors as a distinct object rather than functors from this makes it somewhat difficult to map definitions on a 1-1 basis.
_ = _^op
_ = よcov
_ = よ₀
_ = よ₁
_ = よ- Definition 1.4.1: 
_^op - Definition 1.4.2: 
_^op - Examples 1.4.3:
よcov
よ₀
よ₁
よ
 
1.5 Full and faithful functors🔗
_ = is-faithful
_ = is-full
_ = is-fully-faithful
_ = is-precat-iso
_ = よ-is-fully-faithful
_ = よcov-is-fully-faithful
_ = Subcat
_ = Restrict- Definition 1.5.1:
is-faithful
is-full
is-fully-faithful
is-precat-iso
 - Proposition 1.5.2:
よ-is-fully-faithful
よcov-is-fully-faithful
 - Definition 1.5.3: 
Subcat - Definition 1.5.4: 
Restrict 
1.6 Comma categories🔗
_ = _↓_
_ = Dom
_ = Cod
_ = θ
_ = ∫cov
_ = _×ᶜ_
_ = Cat⟨_,_⟩- Definition 1.6.1: 
_↓_ - Proposition 1.6.2:
Dom
Cod
θ
 - Definition 1.6.4: 
∫cov - Definition 1.6.5: 
_×ᶜ_ - Proposition 1.6.6: 
Cat⟨_,_⟩ 
1.7 Monomorphisms🔗
_ = is-monic
_ = id-monic
_ = ∘-is-monic
_ = monic-cancell
_ = has-section
_ = has-retract
_ = has-retract→monic
_ = faithful→reflects-mono
_ = embedding→monic
_ = monic→is-embedding- Definition 1.7.1: 
is-monic - Proposition 1.7.2:
id-monic
∘-is-monic
monic-cancell
 - Definition 1.7.3:
has-section
has-retract
 - Proposition 1.7.4: 
has-retract→monic - Proposition 1.7.6: 
faithful→reflects-mono - Examples 1.7.7:
embedding→monic,monic→is-embedding
 
1.8 Epimorphisms🔗
_ = is-epic
_ = id-epic
_ = ∘-is-epic
_ = epic-cancelr
_ = has-section→epic
_ = faithful→reflects-epi
_ = surjective→regular-epi
_ = epi→surjective- Definition 1.8.1: 
is-epic - Proposition 1.8.2:
id-epic
∘-is-epic
epic-cancelr
 - Proposition 1.8.3: 
has-section→epic - Proposition 1.8.4: 
faithful→reflects-epi - Examples 1.8.5:
surjective→regular-epi,epi→surjective
 
1.9 Isomorphisms🔗
_ = is-invertible
_ = id-invertible
_ = invertible-∘
_ = invertible→monic
_ = invertible→epic
_ = has-retract+epic→invertible
_ = F-iso.F-map-invertible
_ = is-ff→is-conservative
_ = equiv≃iso- Definition 1.9.1: 
is-invertible - Proposition 1.9.2:
id-invertible
invertible-∘
invertible→monic,invertible→epic
 - Proposition 1.9.3: 
has-retract+epic→invertible - Proposition 1.9.4: 
F-iso.F-map-invertible - Proposition 1.9.5: 
is-ff→is-conservative - Examples 1.9.6:
equiv≃iso
 
1.10 The duality principle🔗
_ = Hom[-,-]- Definition 1.10.1: 
_^op - Examples 1.10.3:
Hom[-,-]
 
1.11 Exercises🔗
_ = thin-functor
_ = よ-preserves-mono
_ = よcov-reverses-epi
_ = Curry
_ = Uncurry
_ = has-section+monic→invertible- Exercise 1.11.1: 🚧 
thin-functor - Exercise 1.11.5: 
よ-preserves-mono - Exercise 1.11.6: 
よcov-reverses-epi - Exercise 1.11.8: 🚧 
Curry,Uncurry - Exercise 1.11.9: 
has-section+monic→invertible 
2 Limits🔗
2.1 Products🔗
_ = is-product
_ = ×-Unique
_ = Binary-products.swap-is-iso
_ = Cartesian-monoidal
_ = is-indexed-product
_ = Indexed-product-unique
_ = is-indexed-product-assoc- Definition 2.1.1: 
is-product - Proposition 2.1.2: 
×-Unique - Proposition 2.1.3:
Binary-products.swap-is-iso
Cartesian-monoidal
 - Definition 2.1.4: 
is-indexed-product - Proposition 2.1.5: 
Indexed-product-unique - Proposition 2.1.6: 
is-indexed-product-assoc 
2.2 Coproducts🔗
_ = is-indexed-coproduct
_ = is-indexed-coproduct→iso
_ = is-indexed-coproduct-assoc- Definition 2.2.1: 
is-indexed-coproduct - Proposition 2.2.2: 
is-indexed-coproduct→iso - Proposition 2.2.3: 
is-indexed-coproduct-assoc 
2.3 Initial and terminal objects🔗
_ = is-initial
_ = is-terminal
_ = Sets-initial
_ = Sets-terminal
_ = Zero-group-is-zero- Definition 2.3.1:
is-terminal
is-initial
 - Examples 2.3.2:
Sets-initial,Sets-terminal
- 🚧 
Zero-group-is-zero 
- 🚧 
 
 
2.4 Equalizers, coequalizers🔗
_ = is-equaliser
_ = is-equaliser→iso
_ = is-equaliser→is-monic
_ = id-is-equaliser
_ = equaliser+epi→invertible- Definition 2.4.1: 
is-equaliser - Proposition 2.4.2: 
is-equaliser→iso - Proposition 2.4.3: 
is-equaliser→is-monic - Proposition 2.4.4: 
id-is-equaliser - Proposition 2.4.5: 
equaliser+epi→invertible 
2.5 Pullbacks, pushouts🔗
_ = is-pullback
_ = Pullback-unique
_ = is-monic→pullback-is-monic
_ = is-invertible→pullback-is-invertible
_ = is-kernel-pair
_ = is-kernel-pair→epil
_ = is-kernel-pair→epir
_ = monic→id-kernel-pair
_ = id-kernel-pair→monic
_ = same-kernel-pair→id-kernel-pair
_ = is-effective-epi.is-effective-epi→is-regular-epi
_ = is-regular-epi→is-effective-epi
_ = pasting-left→outer-is-pullback
_ = Sets-pullbacks- Definition 2.5.1: 
is-pullback - Proposition 2.5.2: 
Pullback-unique - Proposition 2.5.3:
is-monic→pullback-is-monic
is-invertible→pullback-is-invertible
 - Definition 2.5.4: 
is-kernel-pair - Proposition 2.5.5: 
is-kernel-pair→epil,is-kernel-pair→epir - Proposition 2.5.6:
- (1 ⇒ 2): 
monic→id-kernel-pair - (2 ⇒ 1): 
id-kernel-pair→monic - (3 ⇒ 2): 
same-kernel-pair→id-kernel-pair 
 - (1 ⇒ 2): 
 - Proposition 2.5.7: 
is-effective-epi.is-effective-epi→is-regular-epi - Proposition 2.5.8: 
is-regular-epi→is-effective-epi - Proposition 2.5.9:
pasting-left→outer-is-pullback
 - Examples 2.5.10
Sets-pullbacks
 
2.6 Limits and colimits🔗
_ = Cone
_ = is-limit
_ = limits-unique
_ = is-limit.unique₂
_ = Cocone
_ = is-colimit
_ = Limit→Equaliser
_ = Equaliser→Limit
_ = Limit→Pullback
_ = Pullback→Limit- Definition 2.6.1: 
Cone - Definition 2.6.2: 
is-limit - Proposition 2.6.3: 
limits-unique - Proposition 2.6.4: 
is-limit.unique₂ - Definition 2.6.5: 
Cocone - Definition 2.6.6: 
is-colimit - Examples 2.6.7:
Limit→Equaliser,Equaliser→Limit
Limit→Pullback,Pullback→Limit
 
2.7 Complete categories🔗
_ = is-complete- Definition 2.7.2: 
is-complete 
2.8 Existence theorem for limits🔗
_ = with-equalisers
_ = with-pullbacks- Proposition 2.8.2:
with-equalisers
with-pullbacks
 
2.9 Limit preserving functors🔗
_ = preserves-limit
_ = is-lex.pres-monos
_ = corepresentable-preserves-limits
_ = representable-reverses-colimits
_ = reflects-limit
_ = conservative-reflects-limits- Definition 2.9.1: 
preserves-limit - Proposition 2.9.3: 
is-lex.pres-monos - Proposition 2.9.4: 
corepresentable-preserves-limits - Proposition 2.9.5: 
representable-reverses-colimits - Definition 2.9.6: 
reflects-limit - Proposition 2.9.7: 
conservative-reflects-limits 
2.10 Absolute colimits🔗
2.11 Final functors🔗
Borceux uses some outdated terminology here, and also uses a condition that is overly powerful. We opt to stick with the terminology from the nLab instead.
_ = is-final
_ = extend-is-colimit
_ = is-colimit-restrict- Definition 2.11.1: 
is-final - Proposition 2.11.2: 
extend-is-colimit,is-colimit-restrict 
2.12 Interchange of limits🔗
2.13 Filtered colimits🔗
2.14 Universality of colimits🔗
_ = has-stable-colimits- Definition 2.14.1: 
has-stable-colimits 
2.15 Limits in categories of functors🔗
_ = functor-limit
_ = Functor-cat-is-complete
_ = coyoneda- Proposition 2.15.1: 
functor-limit - Theorem 2.15.2: 
Functor-cat-is-complete - Proposition 2.15.6: 
coyoneda 
2.16 Limits in comma categories🔗
2.17 Exercises🔗
_ = Cone→cone- Exercise 2.17.3: 🚧 
Cone→cone - Exercises 2.17.8: 
extend-is-colimit,is-colimit-restrict 
3 Adjoint functors🔗
3.1 Reflection along a functor🔗
_ = Free-object
_ = free-object-unique
_ = free-objects→left-adjoint
_ = _⊣_
_ = free-objects≃left-adjoint
_ = hom-iso→adjoints
_ = make-free-group
_ = Free-monoid⊣Forget
_ = Disc⊣Γ
_ = Γ⊣Codisc- Definition 3.1.1: 
Free-object - Proposition 3.1.2: 
free-object-unique - Proposition 3.1.3: 
free-objects→left-adjoint - Definition 3.1.4: 
_⊣_ - Theorem 3.1.5: 
free-objects≃left-adjoint,hom-iso→adjoints - Examples 3.1.6:
Free-monoid⊣Forget
make-free-group
Disc⊣Γ,Γ⊣Codisc
 
3.2 Properties of adjoint functors🔗
_ = LF⊣GR
_ = right-adjoint-is-continuous- Proposition 3.2.1: 
LF⊣GR - Proposition 3.2.2: 
right-adjoint-is-continuous 
3.3 The adjoint functor theorem🔗
_ = Solution-set
_ = solution-set→left-adjoint- Definition 3.3.2: 
Solution-set - Theorem 3.3.3: 
solution-set→left-adjoint 
3.4 Fully faithful adjoint functors🔗
_ = is-reflective→counit-is-iso
_ = is-counit-iso→is-reflective
_ = is-equivalence- Proposition 3.4.1:
- (⇒). 
is-reflective→counit-is-iso - (⇐). 
is-counit-iso→is-reflective 
 - (⇒). 
 - Definition 3.4.4: 
is-equivalence 
3.5 Reflective subcategories🔗
_ = is-reflective- Definition 3.5.2: 
is-reflective 
3.6 Epireflective subcategories🔗
_ = is-epireflective
_ = epireflective+strong-mono→unit-invertible
_ = factor+strong-mono-unit-invertible→epireflective
_ = is-strong-epireflective
_ = strong-epireflective+mono→unit-invertible
_ = factor+mono-unit-invertible→strong-epireflective- Definition 3.6.1: 
is-epireflective - Proposition 3.6.2:
- (1 ⇒ 2): 
epireflective+strong-mono→unit-invertible - (2 ⇒ 1): 
factor+strong-mono-unit-invertible→epireflective 
 - (1 ⇒ 2): 
 - Definition 3.6.2: 
is-strong-epireflective - Proposition 3.6.4:
- (1 ⇒ 2): 
strong-epireflective+mono→unit-invertible - (2 ⇒ 1): 
factor+mono-unit-invertible→strong-epireflective 
 - (1 ⇒ 2): 
 
3.7 Kan extensions🔗
_ = is-lan
_ = is-ran
_ = cocomplete→lan
_ = ff→pointwise-lan-ext
_ = left-adjoint→preserves-lan
_ = is-initial-cocone→is-colimit
_ = is-colimit→is-initial-cocone
_ = is-colimit→is-initial-cocone
_ = adjoint→is-lan-id
_ = adjoint→is-absolute-lan- Definition 3.7.1: 
is-lan - Theorem 3.7.2: 
cocomplete→lan - Proposition 3.7.3: 
ff→pointwise-lan-ext - Proposition 3.7.4: 
left-adjoint→preserves-lan - Proposition 3.7.5:
- (⇒) 
is-initial-cocone→is-colimit - (⇐) 
is-colimit→is-initial-cocone 
 - (⇒) 
 - Proposition 3.7.6:
- (1 ⇒ 2) 
adjoint→is-lan-id,adjoint→is-absolute-lan 
 - (1 ⇒ 2) 
 
3.8 Tensor products of set-valued functors🔗
3.9 Exercises🔗
_ = right-adjoint→objectwise-rep
_ = corepresentable→left-adjoint
_ = Karoubi-is-completion- Exercise 3.9.2:
- (⇒) 
corepresentable→left-adjoint - (⇐) 
right-adjoint→objectwise-rep 
 - (⇒) 
 - Exercise 3.9.3: 
Karoubi-is-completion 
4 Generators and Projectives🔗
4.1 Well-powered categories🔗
4.2 Intersection and union🔗
4.3 Strong epimorphisms🔗
_ = is-regular-epi
_ = is-strong-epi
_ = ∘-is-strong-epic
_ = strong-epi-cancelr
_ = strong-epi+mono→invertible
_ = is-regular-epi→is-strong-epi
_ = is-strong-epi→is-extremal-epi
_ = equaliser-lifts→is-strong-epi
_ = is-extremal-epi→is-strong-epi- Definition 4.3.1: 
is-regular-epi - Definition 4.3.5: 
is-strong-epi - Proposition 4.3.6:
∘-is-strong-epic
strong-epi-cancelr
strong-epi-mono→invertible
is-regular-epi→is-strong-epi
is-strong-epi→is-extremal-epi
 - Proposition 4.3.7:
equaliser-lifts→is-strong-epi
is-extremal-epi→is-strong-epi
 
4.4 Epi-mono factorizations🔗
4.5 Generators🔗
_ = is-separating-family
_ = is-separator
_ = separating-family→epi
_ = epi→separating-family
_ = is-strong-separating-family
_ = is-regular-separating-family
_ = is-dense-separating-family
_ = is-dense-separator
_ = dense-separator→regular-separator
_ = regular-separator→strong-separator
_ = is-jointly-faithful
_ = is-jointly-conservative
_ = separating-family→jointly-faithful
_ = jointly-faithful→separating-family
_ = separator→faithful
_ = faithful→separator
_ = strong-separating-family→jointly-conservative
_ = lex+jointly-conservative→strong-separating-family
_ = strong-separator→conservative
_ = lex+conservative→strong-separator
_ = equalisers+jointly-conservative→separating-family
_ = dense-separating-family→jointly-ff
_ = jointly-ff→dense-separating-family
_ = zero+separating-family→separator- Definition 4.5.1:
is-separating-familyis-separator
 - Proposition 5.4.2:
- (⇒) 
separating-family→epic - (⇐) 
epic→separating-family 
 - (⇒) 
 - Definition 4.5.3:
is-strong-separating-familyis-regular-separating-family
 - Definition 4.5.4:
is-dense-separating-familyis-dense-separator
 - Proposition 4.5.5:
dense-separator→regular-separatorregular-separator→strong-separator
 - Definition 4.5.7:
is-jointly-faithfulis-jointly-conservative
 - Proposition 4.5.8:
- (⇒) 
separating-family→jointly-faithful - (⇐) 
jointly-faithful→separating-family{.Agda} 
 - (⇒) 
 - Proposition 4.5.9:
- (⇒) 
separator→faithful - (⇐) 
faithful→separator 
 - (⇒) 
 - Proposition 4.5.10:
- (⇒) 
strong-separating-family→jointly-conservative - (⇐) 
lex+jointly-conservative→strong-separating-family 
 - (⇒) 
 - Proposition 4.5.11:
- (⇒) 
strong-separator→conservative - (⇐) 
lex+conservative→strong-separator 
 - (⇒) 
 - Proposition 4.5.12: 
equalisers+jointly-conservative→separating-family - Proposition 4.5.14
- (⇒) 
dense-separating-family→jointly-ff - (⇐) 
jointly-ff→dense-separating-family 
 - (⇒) 
 - Proposition 4.5.16: 
zero+separating-family→separator 
4.6 Projectives🔗
Borceux uses the term “projective” to refer to strong projectives.
_ = is-strong-projective
_ = preserves-strong-epis→strong-projective
_ = strong-projective→preserves-strong-epis
_ = indexed-coproduct-strong-projective
_ = retract→strong-projective
_ = Strong-projectives
_ = strong-projective-separating-faily→strong-projectives
_ = zero+indexed-coproduct-strong-projective→strong-projective- Definition 4.6.1: 
is-strong-projective - Proposition 4.6.2: Note that there is a slight typo in Borceux here:
must preserve strong epimorphisms. (⇒) 
preserves-strong-epis→strong-projective(⇐)strong-projective→preserves-strong-epis - Proposition 4.6.3: 
indexed-coproduct-strong-projective - Proposition 4.6.4: 
retract→strong-projective - Definition 4.6.5: 
Strong-projectives - Proposition 4.6.6: 
strong-projective-separating-faily→strong-projectives - Proposition 4.6.7:
- (⇒) 
zero+indexed-coproduct-strong-projective→strong-projective - (⇐) 
indexed-coproduct-strong-projective 
 - (⇒) 
 
4.7 Injective cogenerators🔗
4.8 Exercises🔗
5 Categories of fractions🔗
5.1 Graphs and path categories🔗
_ = Graph
_ = Graph-hom
_ = Path-in
_ = Path-category
_ = Free-category
_ = Marked-graph
_ = Marked-graphs
_ = Marked-free-category- Definition 5.1.1: 
Graph - Definition 5.1.2: 
Graph-hom - Definition 5.1.3: 
Path-in - Proposition 5.1.4: 
Path-category,Free-category - Definition 5.1.5: 
Marked-graph,Marked-graphs - Proposition 5.1.6: 
Marked-free-category 
5.2 Calculus of fractions🔗
_ = Localisation- Proposition 5.2.2: 
Localisation 
5.3 Reflective subcategories as categories of fractinos🔗
5.4 The orthogonal subcategory problem🔗
_ = Orthogonal
_ = object-orthogonal-!-orthogonal
_ = in-subcategory→orthogonal-to-inverted
_ = orthogonal-to-ηs→in-subcategory
_ = in-subcategory→orthogonal-to-ηs- Definition 5.4.1: 
m⊥m - Definition 5.4.2:
OrthogonalOrthogonal
 - Proposition 5.4.3: 
object-orthogonal-!-orthogonal - Proposition 5.4.4:
- (a ⇒ b) 
in-subcategory→orthogonal-to-inverted - (a ⇒ c) 
in-subcategory→orthogonal-to-ηs 
- (a ⇒ b) 
 
 
5.5 Factorisation systems🔗
_ = is-ofs
_ = factorisation-essentially-unique
_ = L-is-⊥R
_ = in-intersection≃is-iso- Definition 5.5.1: 
is-factorisation-system - Proposition 5.5.2: 
factorisation-essentially-unique - Proposition 5.5.3: 🚧 
E-is-⊥M - Proposition 5.5.4:
in-intersection≃is-iso
 
5.6 The case of localisations🔗
5.7 Universal closure operations🔗
5.8 The calculus of bidense morphisms🔗
5.9 Exercises🔗
6 Flat functors and Cauchy completeness🔗
6.1 Exact functors🔗
_ = is-lex- Definition 6.1.1: 
is-lex 
6.2 Left exact reflection of a functor🔗
6.3 Flat functors🔗
6.4 The relevance of regular cardinals🔗
6.5 The splitting of idempotents🔗
_ = is-idempotent
_ = is-split→is-idempotent
_ = is-split
_ = is-idempotent-complete- Definition 6.5.1: 
is-idempotent - Proposition 6.5.2: 
is-split→is-idempotent - Definition 6.5.3: 
is-split - Definition 6.5.8: 
is-idempotent-complete - Proposition 6.5.9: 
Karoubi-is-completion 
6.6 The more general adjoint functor theorem🔗
6.7 Exercises🔗
7 Bicategories and distributors🔗
7.1 2-categories🔗
7.2 2-functors and 2-natural transformations🔗
7.3 Modifications and n-categories🔗
7.4 2-limits and bilimits🔗
7.5 Lax functors and pseudo-functors🔗
7.6 Lax limits and pseudo-limits🔗
7.7 Bicategories🔗
_ = Prebicategory
_ = _⊣ᵇ_
_ = Spanᵇ- Definition 7.7.1: 
Prebicategory - Definition 7.7.2: 
_⊣ᵇ_ - Example 7.7.3: 
Spanᵇ 
7.8 Distributors🔗
7.9 Cauchy completeness versus distributors🔗
7.10 Exercises🔗
8 Internal category theory🔗
8.1 Internal categories and functors🔗
_ = Internal-cat
_ = Internal-functor
_ = _=>i_
_ = Disci
_ = _^opi- Definition 8.1.1: 
Internal-cat - Definition 8.1.2: 
Internal-functor - Definition 8.1.3: 
_=>i_ - Examples 8.1.6:
Disci
_^opi
 
8.2 Internal base-valued functors🔗
_ = Outer-functor
_ = _=>o_
_ = Outer-functors
_ = ConstO
_ = const-nato- Definition 8.2.1: 
Outer-functor - Definition 8.2.2: 
_=>o_ - Proposition 8.2.3: 
Outer-functors - Example 8.2.4: 
ConstO,const-nato 
8.3 Internal limits and colimits🔗
8.4 Exercises🔗
- Exercise 8.4.6:
- (⇒) 
dependent-product→lcc - (⇐) 
lcc→dependent-product 
 - (⇒) 
 
It also serves as an excellent place to find possible contributions!↩︎
References
- Borceux, Francis. 1994. Handbook of Categorical Algebra. Vol. 1. Encyclopedia of Mathematics and Its Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511525858.