open import Cat.Instances.StrictCat
open import Cat.Instances.Functor
open import Cat.Prelude

open import Order.Base

import Order.Reasoning

open Precategory
module Order.Cat where

Posets as categories🔗

We have already remarked a poset is a special kind of category: a thin category, i.e. one that has propositional sets.

is-thin :  {ℓ ℓ'}  Precategory ℓ ℓ'  Type (ℓ ⊔ ℓ')
is-thin C =  x y  is-prop (C .Hom x y)

This module actually formalises that connection by constructing a fully faithful functor from the category of posets into the category of strict categories. The construction of a category from a poset is entirely unsurprising, but it is lengthy, thus ending up in this module.

poset→category :  {ℓ ℓ'}  Poset ℓ ℓ'  Precategory ℓ ℓ'
poset→category P = cat module poset-to-category where
  module P = Poset P

  cat : Precategory _ _
  cat .Ob      = P.Ob
  cat .Hom     = P.__
  cat .id      = P.≤-refl
  cat .__ f g = P.≤-trans g f
  cat .idr f   = P.≤-thin _ _
  cat .idl f   = P.≤-thin _ _
  cat .assoc f g h = P.≤-thin _ _
  cat .Hom-set x y = is-prop→is-set P.≤-thin

{-# DISPLAY poset-to-category.cat P = poset→category P #-}

poset→thin :  {ℓ ℓ'} (P : Poset ℓ ℓ')  is-thin (poset→category P)
poset→thin P _ _ = P.≤-thin where module P = Poset P

Our functor into is similarly easy to describe: Monotonicity of a map is functoriality when preservation of composites is automatic.

open Functor

monotone→functor
  :  {o ℓ o' ℓ'} {P : Poset o ℓ} {Q : Poset o' ℓ'}
   Monotone P Q  Functor (poset→category P) (poset→category Q)
monotone→functor f .F₀ = f .hom
monotone→functor f .F₁ = f .pres-≤
monotone→functor f .F-id = prop!
monotone→functor f .F-∘ _ _ = prop!

Posets↪Strict-cats :  {ℓ ℓ'}  Functor (Posets ℓ ℓ') (Strict-cats ℓ ℓ')
Posets↪Strict-cats .F₀ P = poset→category P , Poset.Ob-is-set P
Posets↪Strict-cats .F₁ f = monotone→functor f
Posets↪Strict-cats .F-id    = Functor-path  _  refl) λ _  refl
Posets↪Strict-cats .F-∘ f g = Functor-path  _  refl) λ _  refl

More generally, to give a functor into a thin category, it suffices to give the action on objects and morphisms: the laws hold automatically.

module
  _ {oc od ℓc ℓd} {C : Precategory oc ℓc} {D : Precategory od ℓd}
    (D-thin : is-thin D)
  where

  thin-functor
    : (f : C .Ob  D .Ob)
     (f₁ :  {x y}  C .Hom x y  D .Hom (f x) (f y))
     Functor C D
  thin-functor f f₁ .F₀ = f
  thin-functor f f₁ .F₁ = f₁
  thin-functor f f₁ .F-id = D-thin _ _ _ _
  thin-functor f f₁ .F-∘ _ _ = D-thin _ _ _ _