module Data.Id.Base where
Inductive identity🔗
In cubical type theory, we generally use the path types to represent identifications. But in cubical type theory with indexed inductive types, we have a different — but equivalent — choice: the inductive identity type.
data _≡ᵢ_ {ℓ} {A : Type ℓ} (x : A) : A → Type ℓ where
: x ≡ᵢ x
refláµ¢
{-# BUILTIN EQUALITY _≡ᵢ_ #-}
To show that
is equivalent to
for every type
we’ll show that _≡ᵢ_
and refláµ¢
form an identity system regardless of the
underlying type. Since Id
is an
inductive type, we can do so by pattern matching, which results in a
very slick definition:
Id-identity-system: ∀ {ℓ} {A : Type ℓ}
→ is-identity-system (_≡ᵢ_ {A = A}) (λ _ → reflᵢ)
.to-path refláµ¢ = refl
Id-identity-system .to-path-over refláµ¢ = refl Id-identity-system
Paths are, in many ways, more convenient than the inductive identity type: as a (silly) example, for paths, we have definitionally. But the inductive identity type has one property which sets it apart from paths: regularity. Transport along the reflexivity path is definitionally the identity:
: ∀ {ℓ ℓ'} {A : Type ℓ} (P : A → Type ℓ') {x y : A}
substᵢ → x ≡ᵢ y → P x → P y
= x
substáµ¢ P refláµ¢ x
_ : ∀ {ℓ} {A : Type ℓ} {x : A} → substᵢ (λ x → x) reflᵢ x ≡ x
_ = refl
_ = _≡_
: ∀ {ℓ} {A : Type ℓ} {x y : A} → (x ≡ᵢ y) ≃ (x ≡ y)
Id≃path {ℓ} {A} {x} {y} =
Id≃path (Id-identity-system {ℓ = ℓ} {A = A}) {a = x} {b = y}
identity-system-gives-path
module Id≃path {ℓ} {A : Type ℓ} = Ids (Id-identity-system {A = A})
In the 1Lab, we prefer _≡_
over _≡ᵢ_
— which is why there is no comprehensive toolkit for working with the
latter. But it can still be used when we want to avoid
transport along reflexivity, for example, when working with decidable
equality of concrete (indexed) types like Fin
.
: ∀ {ℓ} → Type ℓ → Type ℓ
Discreteᵢ = (x y : A) → Dec (x ≡ᵢ y)
Discreteáµ¢ A
: ∀ {ℓ} {A : Type ℓ} → Discreteᵢ A → Discrete A
Discreteᵢ→discrete {x} {y} with d x y
Discreteᵢ→discrete d ... | yes reflᵢ = yes refl
... | no ¬x=y = no λ p → ¬x=y (Id≃path.from p)
: ∀ {ℓ} {A : Type ℓ} → is-set A → (x y : A) (p q : x ≡ᵢ y) → p ≡ q
is-set→is-setᵢ = Id≃path.injective (A-set _ _ _ _)
is-set→is-setᵢ A-set x y p q
: ∀ {ℓ} {A : Type ℓ} {n} → is-hlevel A (suc n) → (x y : A) → is-hlevel (x ≡ᵢ y) n
≡ᵢ-is-hlevel' {n = n} ahl x y = subst (λ e → is-hlevel e n) (sym (ua Id≃path)) (Path-is-hlevel' n ahl x y) ≡ᵢ-is-hlevel'
: ∀ {ℓ} {A : Type ℓ} {x y : A} → Dec (x ≡ y) → Dec (x ≡ᵢ y)
discrete-id {x = x} {y} (yes p) = yes (subst (x ≡ᵢ_) p reflᵢ)
discrete-id {x = x} {y} (no ¬p) = no λ { reflᵢ → absurd (¬p refl) }
discrete-id
opaque_≡ᵢ?_ : ∀ {ℓ} {A : Type ℓ} ⦃ _ : Discrete A ⦄ (x y : A) → Dec (x ≡ᵢ y)
= discrete-id (x ≡? y)
x ≡ᵢ? y
: ∀ {ℓ} {A : Type ℓ} {x y : A} {d : Discrete A} → (_≡ᵢ?_ ⦃ d ⦄ x y) ≡ discrete-id d
≡ᵢ?-default = refl
≡ᵢ?-default
: ∀ {ℓ} {A : Type ℓ} {x : A} {d : Discrete A} → (_≡ᵢ?_ ⦃ d ⦄ x x) ≡ yes reflᵢ
≡ᵢ?-yes {d = d} = case d return (λ d → discrete-id d ≡ yes reflᵢ) of λ where
≡ᵢ?-yes (yes a) → ap yes (is-set→is-setᵢ (Discrete→is-set d) _ _ _ _)
(no ¬a) → absurd (¬a refl)
{-# REWRITE ≡ᵢ?-default ≡ᵢ?-yes #-}
Discrete-inj': ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B)
→ (∀ {x y} → f x ≡ᵢ f y → x ≡ᵢ y)
→ ⦃ _ : Discrete B ⦄
→ Discrete A
{x} {y} =
Discrete-inj' f inj (λ p → Id≃path.to (inj p)) (λ x → Id≃path.from (ap f x)) (f x ≡ᵢ? f y)
invmap
instance
Discrete-Σ: ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ ⦃ _ : Discrete A ⦄
→ ⦃ _ : ∀ {x} → Discrete (B x) ⦄
→ Discrete (Σ A B)
{B = B} {x = a , b} {a' , b'} = case a ≡ᵢ? a' of λ where
Discrete-Σ (yes reflᵢ) → case b ≡? b' of λ where
(yes q) → yes (ap₂ _,_ refl q)
(no ¬q) → no λ p → ¬q (Σ-inj-set (Discrete→is-set auto) p)
(no ¬p) → no λ p → ¬p (Id≃path.from (ap fst p))
abstract instance
H-Level-Id: ∀ {ℓ n} {S : Type ℓ} ⦃ s : H-Level S (suc n) ⦄ {x y : S}
→ H-Level (x ≡ᵢ y) n
{n = n} = hlevel-instance (Equiv→is-hlevel n Id≃path (hlevel n))
H-Level-Id
substᵢ-filler-set: ∀ {ℓ ℓ'} {A : Type ℓ} (P : A → Type ℓ')
→ is-set A
→ {a : A}
→ (p : a ≡ᵢ a)
→ ∀ x → x ≡ substᵢ P p x
= subst (λ q → x ≡ substᵢ P q x) (is-set→is-setᵢ is-set-A _ _ reflᵢ p) refl
substáµ¢-filler-set P is-set-A p x
record Recalláµ¢
{a b} {A : Type a} {B : A → Type b}
(f : (x : A) → B x) (x : A) (y : B x)
: Type (a ⊔ b)
where
constructor ⟪_⟫ᵢ
field
: f x ≡ᵢ y
eq
recallᵢ: ∀ {a b} {A : Type a} {B : A → Type b}
→ (f : (x : A) → B x) (x : A)
→ Recallᵢ f x (f x)
= ⟪ reflᵢ ⟫ᵢ
recalláµ¢ f x
: ∀ {a} {A : Type a} {x y : A} → x ≡ᵢ y → y ≡ᵢ x
symáµ¢ = refláµ¢
symáµ¢ refláµ¢
_∙ᵢ_ : ∀ {a} {A : Type a} {x y z : A} → x ≡ᵢ y → y ≡ᵢ z → x ≡ᵢ z
= q
reflᵢ ∙ᵢ q
apᵢ: ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ {x y : A}
→ (f : A → B)
→ x ≡ᵢ y → f x ≡ᵢ f y
= refláµ¢
apáµ¢ f refláµ¢
Jᵢ: ∀ {ℓ ℓ'} {A : Type ℓ} {x : A} (P : (y : A) → x ≡ᵢ y → Type ℓ')
→ P x reflᵢ
→ ∀ {y} (p : x ≡ᵢ y)
→ P y p
= prefl Jáµ¢ P prefl refláµ¢