module Cat.Instances.Shape.Cospan where
The “cospan” category🔗
A cospan in a category is a pair of morphisms with a common codomain. A limit over a diagram with cospan shape is called a pullback. Correspondingly, to encode such diagrams, we have a “cospan category” The dual of this category, which looks like is the “span” category. Colimits over a span are called pushouts.
data Cospan-ob ℓ : Type ℓ where
: Cospan-ob ℓ
cs-a cs-b cs-c
: ∀ {ℓ ℓ'} → Cospan-ob ℓ → Cospan-ob ℓ → Type ℓ'
Cospan-hom = Lift _ ⊤ -- identity on a
Cospan-hom cs-a cs-a = Lift _ ⊥ -- no maps a → b
Cospan-hom cs-a cs-b = Lift _ ⊤ -- one map a → c
Cospan-hom cs-a cs-c = Lift _ ⊥ -- no maps b → a
Cospan-hom cs-b cs-a = Lift _ ⊤ -- identity on b
Cospan-hom cs-b cs-b = Lift _ ⊤ -- one map b → c
Cospan-hom cs-b cs-c = Lift _ ⊥ -- no maps c → a
Cospan-hom cs-c cs-a = Lift _ ⊥ -- no maps c → b
Cospan-hom cs-c cs-b = Lift _ ⊤ -- identity on c
Cospan-hom cs-c cs-c
: ∀ {a b} → Precategory a b ·→·←· ·←·→·
= precat where
·→·←· open Precategory
: ∀ {a b c} → Cospan-hom b c → Cospan-hom a b → Cospan-hom a c
compose {cs-a} {cs-a} {cs-a} (lift tt) (lift tt) = lift tt
compose {cs-a} {cs-a} {cs-c} (lift tt) (lift tt) = lift tt
compose {cs-a} {cs-c} {cs-c} (lift tt) (lift tt) = lift tt
compose {cs-b} {cs-b} {cs-b} (lift tt) (lift tt) = lift tt
compose {cs-b} {cs-b} {cs-c} (lift tt) (lift tt) = lift tt
compose {cs-b} {cs-c} {cs-c} (lift tt) (lift tt) = lift tt
compose {cs-c} {cs-c} {cs-c} (lift tt) (lift tt) = lift tt
compose
: Precategory _ _
precat .Ob = Cospan-ob _
precat .Hom = Cospan-hom
precat .Hom-set cs-a cs-a _ _ p q i j = lift tt
precat .Hom-set cs-a cs-c _ _ p q i j = lift tt
precat .Hom-set cs-b cs-b _ _ p q i j = lift tt
precat .Hom-set cs-b cs-c _ _ p q i j = lift tt
precat .Hom-set cs-c cs-c _ _ p q i j = lift tt
precat .id {cs-a} = lift tt
precat .id {cs-b} = lift tt
precat .id {cs-c} = lift tt
precat ._∘_ = compose
precat .idr {cs-a} {cs-a} _ i = lift tt
precat .idr {cs-a} {cs-c} _ i = lift tt
precat .idr {cs-b} {cs-b} _ i = lift tt
precat .idr {cs-b} {cs-c} _ i = lift tt
precat .idr {cs-c} {cs-c} _ i = lift tt
precat .idl {cs-a} {cs-a} _ i = lift tt
precat .idl {cs-a} {cs-c} _ i = lift tt
precat .idl {cs-b} {cs-b} _ i = lift tt
precat .idl {cs-b} {cs-c} _ i = lift tt
precat .idl {cs-c} {cs-c} _ i = lift tt
precat .assoc {cs-a} {cs-a} {cs-a} {cs-a} _ _ _ i = lift tt
precat .assoc {cs-a} {cs-a} {cs-a} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-a} {cs-a} {cs-c} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-a} {cs-c} {cs-c} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-b} {cs-b} {cs-b} {cs-b} _ _ _ i = lift tt
precat .assoc {cs-b} {cs-b} {cs-b} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-b} {cs-b} {cs-c} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-b} {cs-c} {cs-c} {cs-c} _ _ _ i = lift tt
precat .assoc {cs-c} {cs-c} {cs-c} {cs-c} _ _ _ i = lift tt
precat
= ·→·←· ^op
·←·→·
instance
: ∀ {ℓ} → Finite (Cospan-ob ℓ)
Finite-Cospan-ob = fin {cardinality = 3} (inc (Iso→Equiv i)) where
Finite-Cospan-ob : Iso _ _
i .fst cs-a = 0
i .fst cs-b = 1
i .fst cs-c = 2
i .snd .is-iso.inv fzero = cs-a
i .snd .is-iso.inv (fsuc fzero) = cs-b
i .snd .is-iso.inv (fsuc (fsuc fzero)) = cs-c
i .snd .is-iso.rinv fzero = refl
i .snd .is-iso.rinv (fsuc fzero) = refl
i .snd .is-iso.rinv (fsuc (fsuc fzero)) = refl
i .snd .is-iso.linv cs-a = refl
i .snd .is-iso.linv cs-b = refl
i .snd .is-iso.linv cs-c = refl
i
: ∀ {a b} → is-finite-precategory (·→·←· {a} {b})
·→·←·-finite = finite-cat-hom λ where
·→·←·-finite → auto
cs-a cs-a → auto
cs-a cs-b → auto
cs-a cs-c → auto
cs-b cs-a → auto
cs-b cs-b → auto
cs-b cs-c → auto
cs-c cs-a → auto
cs-c cs-b → auto cs-c cs-c
Converting a pair of morphisms with common codomain to a cospan-shaped diagram is straightforward:
module _ x y {o ℓ} {C : Precategory o ℓ} where
open Precategory C
open Functor
: ∀ {a b c} → Hom a c → Hom b c → Functor (·→·←· {x} {y}) C
cospan→cospan-diagram = funct where
cospan→cospan-diagram f g : Functor _ _
funct .F₀ cs-a = _
funct .F₀ cs-b = _
funct .F₀ cs-c = _
funct .F₁ {cs-a} {cs-c} _ = f
funct .F₁ {cs-b} {cs-c} _ = g funct
.F₁ {cs-a} {cs-a} _ = _
funct .F₁ {cs-b} {cs-b} _ = _
funct .F₁ {cs-c} {cs-c} _ = _
funct .F-id {cs-a} = refl
funct .F-id {cs-b} = refl
funct .F-id {cs-c} = refl
funct .F-∘ {cs-a} {cs-a} {cs-a} _ _ i = idl id (~ i)
funct .F-∘ {cs-a} {cs-a} {cs-c} _ _ i = idr f (~ i)
funct .F-∘ {cs-a} {cs-c} {cs-c} _ _ i = idl f (~ i)
funct .F-∘ {cs-b} {cs-b} {cs-b} _ _ i = idl id (~ i)
funct .F-∘ {cs-b} {cs-b} {cs-c} _ _ i = idr g (~ i)
funct .F-∘ {cs-b} {cs-c} {cs-c} _ _ i = idl g (~ i)
funct .F-∘ {cs-c} {cs-c} {cs-c} _ _ i = idl id (~ i)
funct
: ∀ {a b c} → Hom a b → Hom a c → Functor (·←·→· {x} {y}) C
span→span-diagram {a} {b} {c} f g = funct where
span→span-diagram : Functor _ _
funct .F₀ cs-a = _
funct .F₀ cs-b = _
funct .F₀ cs-c = _
funct .F₁ {cs-a} {cs-a} _ = id
funct .F₁ {cs-b} {cs-b} _ = id
funct .F₁ {cs-c} {cs-a} _ = g
funct .F₁ {cs-c} {cs-b} _ = f
funct .F₁ {cs-c} {cs-c} _ = id
funct .F-id {cs-a} = refl
funct .F-id {cs-b} = refl
funct .F-id {cs-c} = refl
funct .F-∘ {cs-a} {cs-a} {cs-a} _ _ i = idl id (~ i)
funct .F-∘ {cs-b} {cs-b} {cs-b} _ _ i = idl id (~ i)
funct .F-∘ {cs-c} {cs-a} {cs-a} _ _ i = idl g (~ i)
funct .F-∘ {cs-c} {cs-b} {cs-b} _ _ i = idl f (~ i)
funct .F-∘ {cs-c} {cs-c} {cs-a} _ _ i = idr g (~ i)
funct .F-∘ {cs-c} {cs-c} {cs-b} _ _ i = idr f (~ i)
funct .F-∘ {cs-c} {cs-c} {cs-c} _ _ i = idr id (~ i) funct