module Cat.Instances.Product where
open Precategory
open Functor
open _=>_
private variable
: Level
o₁ h₁ o₂ h₂ : Precategory o₁ h₁ B C D E
Product categories🔗
Let and be two precategories; we put no restrictions on their relative sizes. Their product category is the category having as object pairs of an object and and the morphisms are pairs of a morphism in and a morphism in The product category admits two projection functors
satisfying a universal property analogous to those of product diagrams in categories. Namely, given a setup like in the diagram below, there is a unique1 functor which fits into the dashed line and makes the whole diagram commute.
Formulating this universal property properly would take us further afield into 2-category theory than is appropriate here.
_×ᶜ_ : Precategory o₁ h₁ → Precategory o₂ h₂ → Precategory _ _
= prodcat module ×ᶜ where
C ×ᶜ D module C = Precategory C
module D = Precategory D
: Precategory _ _
prodcat .Ob = Ob C × Ob D
prodcat .Hom (a , a') (b , b') = Hom C a b × Hom D a' b'
prodcat .Hom-set (a , a') (b , b') = hlevel 2
prodcat .id = id C , id D
prodcat ._∘_ (f , f') (g , g') = f C.∘ g , f' D.∘ g'
prodcat .idr (f , f') i = C.idr f i , D.idr f' i
prodcat .idl (f , f') i = C.idl f i , D.idl f' i
prodcat .assoc (f , f') (g , g') (h , h') i =
prodcat .assoc f g h i , D.assoc f' g' h' i
C
{-# DISPLAY ×ᶜ.prodcat a b = a ×ᶜ b #-}
infixr 20 _×ᶜ_
We define the two projection functors
(resp
as the evident liftings of the fst
and snd
operations from the product
type. Functoriality is automatic because composites (and
identities) are defined componentwise in the product category.
: Functor (C ×ᶜ D) C
Fst .F₀ = fst
Fst .F₁ = fst
Fst .F-id = refl
Fst .F-∘ _ _ = refl
Fst
: Functor (C ×ᶜ D) D
Snd .F₀ = snd
Snd .F₁ = snd
Snd .F-id = refl
Snd .F-∘ _ _ = refl
Snd
_,_⟩ : Functor E C → Functor E D → Functor E (C ×ᶜ D)
Cat⟨= f where
Cat⟨ F , G ⟩ : Functor _ _
f .F₀ x = F .F₀ x , G .F₀ x
f .F₁ f = F .F₁ f , G .F₁ f
f .F-id i = F .F-id i , G .F-id i
f .F-∘ f g i = F .F-∘ f g i , G .F-∘ f g i
f
_F×_ : Functor B D → Functor C E → Functor (B ×ᶜ C) (D ×ᶜ E)
_F×_ {B = B} {D = D} {C = C} {E = E} G H = func
module F× where
: Functor (B ×ᶜ C) (D ×ᶜ E)
func .F₀ (x , y) = G .F₀ x , H .F₀ y
func .F₁ (f , g) = G .F₁ f , H .F₁ g
func .F-id = G .F-id ,ₚ H .F-id
func .F-∘ (f , g) (f' , g') = G .F-∘ f f' ,ₚ H .F-∘ g g'
func
_nt×_
: {F G : Functor B D} {H K : Functor C E}
→ F => G → H => K → (F F× H) => (G F× K)
_nt×_ α β .η (c , d) = α .η c , β .η d
_nt×_ α β .is-natural (c , d) (c' , d') (f , g) = Σ-pathp
(α .is-natural c c' f)
(β .is-natural d d' g)
{-# DISPLAY F×.func F G = F F× G #-}
Univalence🔗
Isomorphisms in functor categories admit a short description, too: They are maps which are componentwise isomorphisms. It follows, since paths in product types are products of paths in the component types, that the product of univalent categories is itself a univalent category.
module
_ {o ℓ o' ℓ'} {C : Precategory o ℓ} {D : Precategory o' ℓ'}
(c-cat : is-category C) (d-cat : is-category D) where
private
module C = Univalent c-cat
module D = Univalent d-cat
module C*D = Cat.Reasoning (C ×ᶜ D)
: is-category (C ×ᶜ D)
×ᶜ-is-category .to-path im =
×ᶜ-is-category (C.iso→path (F-map-iso Fst im)) (D.iso→path (F-map-iso Snd im))
Σ-pathp .to-path-over p = C*D.≅-pathp _ _ $
×ᶜ-is-category (Univalent.Hom-pathp-reflr-iso c-cat (C.idr _))
Σ-pathp (Univalent.Hom-pathp-reflr-iso d-cat (D.idr _))
When and are precategories, this functor is only unique up to a natural isomorphism↩︎