*-zerol : 0r * x ≡ 0r
*-zerol {x} =
0r * x ≡⟨ a.introl a.inversel ⟩
(- 0r * x) + 0r * x + 0r * x ≡⟨ a.pullr (sym *-distribr) ⟩
(- 0r * x) + (0r + 0r) * x ≡⟨ ap₂ _+_ refl (ap (_* x) a.idl) ⟩
(- 0r * x) + 0r * x ≡⟨ a.inversel ⟩
0r ∎
*-zeror : x * 0r ≡ 0r
*-zeror {x} =
x * 0r ≡⟨ a.intror a.inverser ⟩
x * 0r + (x * 0r - x * 0r) ≡⟨ a.pulll (sym *-distribl) ⟩
x * (0r + 0r) - x * 0r ≡⟨ ap₂ _-_ (ap (x *_) a.idl) refl ⟩
x * 0r - x * 0r ≡⟨ a.inverser ⟩
0r ∎
*-negatel : (- x) * y ≡ - (x * y)
*-negatel {x} {y} = monoid-inverse-unique a.has-is-monoid (x * y) ((- x) * y) (- (x * y))
(sym *-distribr ·· ap (_* y) a.inversel ·· *-zerol)
a.inverser
*-negater : x * (- y) ≡ - (x * y)
*-negater {x} {y} = monoid-inverse-unique a.has-is-monoid (x * y) (x * (- y)) (- (x * y))
(sym *-distribl ·· ap (x *_) a.inversel ·· *-zeror)
a.inverser