open import Algebra.Group.Cat.Base
open import Algebra.Group

open import Cat.Functor.Properties
open import Cat.Prelude hiding (_*_ ; _+_)

import Cat.Reasoning
module Algebra.Group.Ab where

Abelian groups🔗

A very important class of groups (which includes most familiar examples of groups: the integers, all finite cyclic groups, etc) are those with a commutative group operation, that is, those for which Accordingly, these have a name reflecting their importance and ubiquity: They are called commutative groups. Just kidding! They’re named abelian groups, named after a person, because nothing can have self-explicative names in mathematics. It’s the law.

private variable
: Level
  G : Type ℓ

Group-on-is-abelian : Group-on G  Type _
Group-on-is-abelian G =  x y  Group-on.__ G x y ≡ Group-on.__ G y x

Group-on-is-abelian-is-prop : (g : Group-on G)  is-prop (Group-on-is-abelian g)
Group-on-is-abelian-is-prop g = Π-is-hlevel² 1 λ _ _  g .Group-on.has-is-set _ _

This module does the usual algebraic structure dance to set up the category of Abelian groups.

record is-abelian-group (_*_ : G  G  G) : Type (level-of G) where
  no-eta-equality
  field
    has-is-group : is-group _*_
    commutes     :  {x y}  x * y ≡ y * x
  open is-group has-is-group renaming (unit to 1g) public
  equal-sum→equal-diff :  a b c d  a * b ≡ c * d  a — c ≡ d — b
  equal-sum→equal-diff a b c d p = commutes ∙ swizzle p inverser inversel
private unquoteDecl eqv = declare-record-iso eqv (quote is-abelian-group)
instance
  H-Level-is-abelian-group
    :  {n} {* : G  G  G}  H-Level (is-abelian-group *) (suc n)
  H-Level-is-abelian-group = prop-instance $ Iso→is-hlevel 1 eqv $
    Σ-is-hlevel 1 (hlevel 1) λ x  Π-is-hlevel²' 1 λ _ _ 
      is-group.has-is-set x _ _
record Abelian-group-on (T : Type ℓ) : Type ℓ where
  no-eta-equality
  field
    _*_       : T  T  T
    has-is-ab : is-abelian-group _*_
  open is-abelian-group has-is-ab renaming (inverse to infixl 30 _⁻¹) public
  Abelian→Group-on : Group-on T
  Abelian→Group-on .Group-on.__ = _*_
  Abelian→Group-on .Group-on.has-is-group = has-is-group

  Abelian→Group-on-abelian : Group-on-is-abelian Abelian→Group-on
  Abelian→Group-on-abelian _ _ = commutes

  infixr 20 _*_

open Abelian-group-on using (Abelian→Group-on; Abelian→Group-on-abelian) public
Abelian-group-structure :  Thin-structure ℓ Abelian-group-on
∣ Abelian-group-structure ℓ .is-hom f G₁ G₂ ∣ =
  is-group-hom (Abelian→Group-on G₁) (Abelian→Group-on G₂) f
Abelian-group-structure ℓ .is-hom f G₁ G₂ .is-tr = hlevel 1
Abelian-group-structure ℓ .id-is-hom .is-group-hom.pres-⋆ x y = refl
Abelian-group-structure ℓ .∘-is-hom f g α β .is-group-hom.pres-⋆ x y =
  ap f (β .is-group-hom.pres-⋆ x y) ∙ α .is-group-hom.pres-⋆ (g x) (g y)
Abelian-group-structure ℓ .id-hom-unique {s = s} {t} α _ = p where
  open Abelian-group-on

  p : s ≡ t
  p i ._*_ x y = α .is-group-hom.pres-⋆ x y i
  p i .has-is-ab = is-prop→pathp
     i  hlevel {T = is-abelian-group  x y  p i ._*_ x y)} 1)
    (s .has-is-ab) (t .has-is-ab) i

Ab :  Precategory (lsuc ℓ)
Ab ℓ = Structured-objects (Abelian-group-structure ℓ)

module Ab {} = Cat.Reasoning (Ab ℓ)

instance
  Ab-equational :  {}  is-equational (Abelian-group-structure ℓ)
  Ab-equational .is-equational.invert-id-hom = Groups-equational .is-equational.invert-id-hom
Abelian-group : (: Level)  Type (lsuc ℓ)
Abelian-group _ = Ab.Ob

Abelian→Group :  {}  Abelian-group ℓ  Group ℓ
Abelian→Group G = G .fst , Abelian→Group-on (G .snd)

record make-abelian-group (T : Type ℓ) : Type ℓ where
  no-eta-equality
  field
    ab-is-set : is-set T
    mul   : T  T  T
    inv   : T  T
    1g    : T
    idl   :  x  mul 1g x ≡ x
    assoc :  x y z  mul x (mul y z) ≡ mul (mul x y) z
    invl  :  x  mul (inv x) x ≡ 1g
    comm  :  x y  mul x y ≡ mul y x

  make-abelian-group→make-group : make-group T
  make-abelian-group→make-group = mg where
    mg : make-group T
    mg .make-group.group-is-set = ab-is-set
    mg .make-group.unit   = 1g
    mg .make-group.mul    = mul
    mg .make-group.inv    = inv
    mg .make-group.assoc  = assoc
    mg .make-group.invl   = invl
    mg .make-group.idl    = idl

  to-group-on-ab : Group-on T
  to-group-on-ab = to-group-on make-abelian-group→make-group

  to-abelian-group-on : Abelian-group-on T
  to-abelian-group-on .Abelian-group-on._*_ = mul
  to-abelian-group-on .Abelian-group-on.has-is-ab .is-abelian-group.has-is-group =
    Group-on.has-is-group to-group-on-ab
  to-abelian-group-on .Abelian-group-on.has-is-ab .is-abelian-group.commutes =
    comm _ _

  to-ab : Abelian-group ℓ
  ∣ to-ab .fst ∣ = T
  to-ab .fst .is-tr = ab-is-set
  to-ab .snd = to-abelian-group-on

is-commutative-group :  {}  Group ℓ  Type ℓ
is-commutative-group G = Group-on-is-abelian (G .snd)

from-commutative-group
  :  {} (G : Group ℓ)
   is-commutative-group G
   Abelian-group ℓ
from-commutative-group G comm .fst = G .fst
from-commutative-group G comm .snd .Abelian-group-on._*_ =
  Group-on.__ (G .snd)
from-commutative-group G comm .snd .Abelian-group-on.has-is-ab .is-abelian-group.has-is-group =
  Group-on.has-is-group (G .snd)
from-commutative-group G comm .snd .Abelian-group-on.has-is-ab .is-abelian-group.commutes =
  comm _ _

Grp→Ab→Grp
  :  {} (G : Group ℓ) (c : is-commutative-group G)
   Abelian→Group (from-commutative-group G c) ≡ G
Grp→Ab→Grp G c = Σ-pathp refl go where
  go : Abelian→Group-on (from-commutative-group G c .snd) ≡ G .snd
  go i .Group-on.__ = G .snd .Group-on.__
  go i .Group-on.has-is-group = G .snd .Group-on.has-is-group

open make-abelian-group using (make-abelian-group→make-group ; to-group-on-ab ; to-abelian-group-on ; to-ab) public

open Functor

Ab↪Grp :  {}  Functor (Ab ℓ) (Groups ℓ)
Ab↪Grp .F₀ = Abelian→Group
Ab↪Grp .F₁ f .hom = f .hom
Ab↪Grp .F₁ f .preserves = f .preserves
Ab↪Grp .F-id = trivial!
Ab↪Grp .F-∘ f g = trivial!

Ab↪Grp-is-ff :  {}  is-fully-faithful (Ab↪Grp {})
Ab↪Grp-is-ff {x = A} {B} = is-iso→is-equiv $ iso
  promote  _  trivial!)  _  trivial!)
  where
    promote : Groups.Hom (Abelian→Group A) (Abelian→Group B)  Ab.Hom A B
    promote f .hom = f .hom
    promote f .preserves = f .preserves

Ab↪Sets :  {}  Functor (Ab ℓ) (Sets ℓ)
Ab↪Sets = Grp↪Sets F∘ Ab↪Grp

The fundamental example of an abelian group is the group of integers.

Given an abelian group we can define the negation automorphism which inverts every element: since the group operation is commutative, we have so this is a homomorphism.

module _ {} (G : Abelian-group ℓ) where
  open Abelian-group-on (G .snd)
  negation : G Ab.≅ G
  negation = total-iso
    (_⁻¹ , is-involutive→is-equiv  _  inv-inv))
    (record { pres-⋆ = λ x y  inv-comm ∙ commutes })